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Abstract

In this paper, we study the tail risk measure in financial market. Recently, Kelly and

Jiang (2014) propose a measure based on Hill (1975)’s method. They arbitrarily estimate

the Hill tail risk by fixing the threshold at the 0.05 empirical quantile level. We show

by various simulation experiments that their measure is very sensitive to the choice of

thresholds. To endogenize the threshold choice, we propose a novel composite Pareto-

Normal model for tail risk measure. Using the variance decomposition, our tail risk

measure natually maps to the overall volatility. We show that the induced total volatility

from our estimated tail risk measure matches the market volatility well, whereas that of

Kelly and Jiang’s Hill estimate deviates substantially from the market volatility. Finally,

we investigate the predictive power of tail risk on realized volatility. The results show

that our proposed method outperform the Hill estimate in volatility forecast.

Keywords: Tail risk; Hill estimator; Extreme value theory; Composite Pareto-Nomal

model; Volatility forecast
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1 Introduction

Tail risk, which describes the probability of extreme loss, is of interest in varieties of

areas, such as finance and actuarial science. Practitioners in finance pay cautious at-

tention to the downside tail risk for it represents the risk of large investment loss. It

is well acknowledged that the heavy tails exists in financial data, see e.g. Jansen and

De Vries (1991) and Mandelbrot (1997). Thus, traditional techniques that use normal or

other approximations to estimate the distribution of assets’ returns will underestimate

the tail risk. The very early measurement of downside risk is the safety-first criterion

of Roy (1952). Based on this criterion that minimizing the probability of the portfolio’s

return falling below a minimum desired threshold, investors can select a portfolio or as-

set over the others accordingly. Some scholars such as Bawa (1975) and Fishburn (1977)

propose the lower partial moments, in which risk is defined as the probability weighted

function of the deviations below a target return. After the financial crises in the 1990s,

value-at-risk (VaR) is widely used as a risk measure. It estimates the least loss over a

target period given a level of confidence. Later, Artzner (1997), Artzner, Delbaen, Eber,

and Heath (1999) show that VaR has some shortcomings and propose the conditional

value-at-risk (CVaR), also known as the expected shortfall (ES). The CVaR at a given

level of confidence is defined as the expected loss under the condition that the loss is

greater than the corresponding VaR.

It is commonly observed that the tail distribution of financial data entails power

type behaviour such as the Pareto distribution. The Pareto distribution is a power law

probability distribution named after Vilfredo Pareto. This distribution is originally used

to describe the income distribution. Later, the Pareto distribution and its generalized

form are recognized as a useful model for heavy tailed behavior. The Pareto distribution
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is parameterized by the shape coefficient α. The smaller the value of α, the thicker the

tail captured by Pareto. Thus, the reciprocal 1/α can be regarded as the tail risk index,

i.e. the larger the value of 1/α, the higher the tail risk and vice versa.

The most popular estimator for the tail index is proposed by Hill (1975). The Hill

estimator is semi-parametric and easy to calculate. Therefore, it is adopted by both

practical risk management and academic studies. However, the application of the Hill

estimator has its limit in financial data, because there are very few extreme returns

observed for a particular firm. Kelly and Jiang (2014) (KJ hereafter) hypothesise that

all firms expose to the same tail risk and use pooled firm returns to overcome the small

sample size problem. They assume that each firm’s tail risk consists of two parts. The

first part is the firm-specific tail risk and the second part is time-varying global tail risk.

Accordingly, they decompose the shape parameter α into two parts: ai corresponds to

firm-specific risk, and 1/λt corresponds to the dynamic common risk. Following this

assumption, KJ’s Hill estimator estimates a common tail risk component λt multiplied

by the mean of 1/ai.

Besides the small sample problem, KJ’s Hill estimator also suffer from the uncertainty

of threshold choice. To implement KJ’s method, we have to first specify a threshold,

e.g. the 0.05 empirical quantile, then estimate the Pareto parameter using the data

below it, discarding the rest data. For time varying tail risk, the threshold should also

change over time according to different risk level. One method of threshold selection is

to use various graphical tools, e.g. a log-log plot of the CDF (see for example Coles,

Bawa, Trenner, and Dorazio (2001)). However, this may result in bias estimate due to

its subjectivity. Clauset, Young, and Gleditsch (2007) propose a formal way to select

the threshold. They suggest to choose the point which minimizes the Kolomogorov-

Smirnov statistic. A comprehensive survey on the application of Pareto distributions
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can be found in Clauset, Shalizi, and Newman (2009).

Another approach is to construct a full parametric model to endogenize the threshold

as one of the parameter to be estimated. De Melo Mendes and Lopes (2004) propose

a simple composite distribution consists of normal and generalised Pareto distributions.

However, in their paper, the threshold is not modeled as a parameter but as a by-product

in fitting the best proportion of data in the tail. Behrens, Lopes, and Gamerman (2004)

also consider the model with normal distribution for the non-tail part and generalised

Pareto distribution for the tail part. And the threshold is treated as a parameter and

estimated by Bayesian inference approach. Zhao, Scarrott, Oxley, and Reale (2010)

develop a similar composite distribution and apply in the GARCH framework. They

study univariate time series (e.g. S&P 100 return in their paper) and thus the small

sample problem of extreme returns exists. Thus, they adopt the Bayesian method to

overcome the problem. However, all the abovementioned papers do not consider the

continuity and smooth conditions, so the composite density may be discontinuous at

the threshold. Carreau and Bengio (2009) develop the hybrid Pareto distribution model

composed of normal and generalised Pareto distribution with constraints of continuity

and differentiability. And they apply their model to insurance data.

In this paper, we adopt the second approach and propose a composite Pareto-Normal

model for tail risk. We also follow KJ’s dynamic common risk setup with pooled cross-

section data. Therefore, we avoid the problem of sparse extreme sample and at the same

time endogenize the choice of threshold problem in KJ’s method. The reminder of this

paper is organized as follows. In Section 2, we review KJ’s dynamic Hill estimator and

propose our composite Pareto-Normal model. Monte Carlo simulations are conducted

in Section 3. In Section 4, we apply our model to the monthly pooled return data and

compare our tail risk estimate with KJ’s method. Section 5 studies the predictive power
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of different tail risk estimators in volatility forecast. Finally, we conclude the paper in

Section 6.

2 Methedology

2.1 The Hill estimator and dynamic power law

The Hill power law estimator estimates the shape parameter α of Pareto distribution

which is referred to as tail risk measure and α may change over time (see Quintos, Fan,

and Phillips (2001)) . Therefore, it is infeasible to capture the tail risk of one individual

firm because of infrequency of extreme returns. KJ develops a panel estimation method

which estimate the common part of the tail risk of firms over time. They pool together

all firms’ daily returns within a month to calculate the Hill estimator. Specifically, the

lower tail of the return of asset i is assumed to follow a tail pareto distribution with the

cumulative density function

FRi,t(x) =

(
x

θt

)−ai/λt
, x < θt < 0, (1)

where θt is an extreme threshold in month t. Compared to the usual form of the power

law, KJ decomposes the shape parameter α into two parts, ai and 1/λt, where ai corre-

sponds to the specific tail risk of asset i and 1/λt is the time-varying common tail risk

for all firms. The Hill estimator is

λHillt =
1

Kt

Kt∑
k=1

ln

(
Rk,t

θt

)
, (2)

where Rk,t is the daily return below the threshold θt in month t, and Kt is the total

number of those exceeding returns in month t.

We can see from Equation 1 that ln(Ri,t/θt) is exponentially distributed with the
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rate parameter ai/λt. Thus the expected value of ln(Ri,t/θt) is

Et−1[ln(Ri,t/θt)] = λt/ai, (3)

and together with Equation 2, the expected value of λHillt is

Et−1(λHillt ) = Et−1

[
1

Kt

Kt∑
k=1

ln

(
Rk,t

θt

) ∣∣∣∣λt, Rk,t < θt

]
≈ λt

1

ā
, (4)

where 1
ā
≡ 1

n

∑i=1
n

1
ai

. Therefore, the expected Hill estimator is equal to the common tail

risk component λt multiplied by a constant bias term which is the mean of the reciprocal

of ai.

The threshold θt is the point below which returns are assumed to follow the Pareto

Law. Thus a small threshold may lead to bias of the estimator because many legitimate

tail data are discarded. On the other hand, a large threshold will also induce bias because

non-tail data are included. KJ uses a simple rule advocated by Gabaix, Gopikrishnan,

Plerou, and Stanley (2005) to determine θt. They fix θt at the fifth quantile of the pooled

returns each month regardless of the risk level. We conjecture that the lower the true

tail risk (small value of λt), the larger the bias of KJ’s estimate, since more returns from

the non-tail domain are included when the threshold is not adjusted accordingly.

2.2 Composite Pareto-Normal Model

In contrast to KJ’s approach, we propose a composite pareto-normal model to estimate

the tail risk. This model is constructed by stitching a Pareto tail to the left tail of

a normal distribution. We use Pareto distribution instead of generalised Pareto dis-

tribution because the former has less parameters than generalized Pareto distribution,

making it relatively simple in constructing the model and estimating the paremeters.

We also impose continuity and smoothness restrictions as in Carreau and Bengio (2009).
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Specifically, the Pareto-Normal (PN hereafter) density is

ft(x) =

{
rt

1

1−Φ( θt−µtσ )
f1(x) if x > θt,

(1− rt)f2(x) if x ≤ θt,
(5)

where

f1(x) =
1√

2πσt
exp

{
−(x− µt)2

2σ2
t

}
,

f2(x) =
−αtθαtt
xαt+1

,

(6)

Φ(ξ) is the cumulative distribution function of the standard normal distribution, θt < 0

is the threshold splitting the domain into tail and non-tail parts, rt is the corresponding

quantile probability Pr(x ≤ θt); µt and σ2
t are the mean and variance of the non-tail

part; and αt is the shape parameter of the Pareto tail. Imposing a continuity requirement

at θ such that f(θt−) = f(θt+), we have

r =
f2(θt)

f1(θt)

1−Φ
(
θt−µt
σt

) + f2(θt)

=
αt

[
1− Φ

(
θt−µt
σt

)]
αt

[
1− Φ

(
θt−µt
σt

)]
− θt√

2πσt
exp

{
− (θt−µt)2

2σ2
t

} . (7)

Further, by differentiability condition at θ such that f ′(θt−) = f ′(θt+), we have

θt − µt
σt

=
σt
θt

(αt + 1), (8)

where f ′(x) is the first derivative of f(x). These two constraints restrict the probability

density function to be continuous and smooth. Our model is relatively simple with

three unknown parameters, αt, θt and σt. The threshold θt is one of the parameters

to be estimated and thus we endogenize the choice of threshold. Note that threshold

quantile probability rt is also time varying in contrast to KJ’s method which is always

fixed at 0.05.

In the next section. we conduct various Monte Carlo simulations and demonstrate

the performance of KJ’s Hill estimator and PN model under different scenarios.
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3 Monte Carlo Simulations

In this section, Monte Carlo simulations are conducted according to the composite PN

distribution. The data generating process follows the PN distribution with µ = 0 and

σ = 1. For the tail parameter α, we choose nine different values of α such that 1/α

ranges from 0.2 to 0.6 with increment 0.05. Note that the corresponding θ and r are

determined by Equation 7 and Equation 8 given µ, σ and α. Figure 1 shows the density

plots of the composite PN distribution with different α. We simulate 1000 times for each

values of 1/α with three different sample sizes 10000, 50000 and 100000. The sample

sizes are chosen in order to have similar magnitude of our pooled financial data. We

choose ten different thresholds which are the first to tenth quantiles of the simulated

data for the Hill estimation. Note that the Hill estimator is estimating the value of 1/α.

We also calculate the percentage biases between the Hill estimators and the true 1/α

values.

[Figure 1 ]

In Table 1, panel A, B and C respectively show the simulation results in three different

sample sizes. It is obvious that the Hill estimators have no significant differences in

these three panels. This indicates that the sample sizes are large enough for estimation.

Table 2 shows the percentage biases between Hill estimators and the true values. The

result indicates that for a given risk level (fixed a row), the bias gets larger if the selected

threshold is too high such that non-tail data are included. While for each threshold (fixed

a column), the Hill estimator tends to overestimate when the tail risk level gets lower.

This confirms our conjecture that lower tail risk level results in larger bias of the Hill

estimator. We roughly draw the boarder separating the high and low biases region in the

table. The diagonal pattern of the optimal threshold demonstrates that the threshold
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should adjust with different tail risk level. In KJ’s paper, they choose the fifth percentile

as the fixed threshold, which corresponds to the 5% threshold column in Table 1 and

Table 2. We can see the biases are relatively large when the the tail risk is lower than

0.35 in our simulations.

[Table 1 and Table 2]

We also use the PN model to estimate the values of tail risk of the simulated data.

The estimation results and the biases between estimates and the true values are shown

in Table 3. It is not surprising that, for different values of 1/α, our PN model accurately

estimates the true values in all sample sizes with small biases.

[Table 3]

4 The Market Tail Risk

4.1 Tail Risk Estimates: PN vs. KJ

Following KJ’s paper, we collect daily data from CRSP for NYSE/AMEX/NASDAQ

stocks with share codes 10 and 11. The time range of data is from January 1963 to

December 2010. We calculate daily returns of each stock and pool all returns together

within the same month. There are 58,047,910 returns in total and 100,780 returns

on average in each month. We compare KJ’s dynamic Hill estimator and the tail risk

measure of our composite PN model (i.e. 1/α). The PN model is estimated by maximum

likelihood method.

Figure 2 plots the KJ’s Hill estimator and the PN tail risk measure during the

period from January 1963 to December 2010. We can see that they share almost the
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same pattern but at different levels. The beginning of the series is just after a large drop

in the U.S. stock market in the postwar era. Both KJ’s estimator and PN’s measure

are high at beginning, and they start to decline rapidly until they hit the lowest level

of the whole sample in the year 1968. This lowest tail risk level corresponds to the

booming market in the late 1960s. The PN and KJ’s tail risk series both rise afterward

and the increasing momentum lasts for about ten years. After this rise, both KJ and

PN show that the tail risk performs a slow and long slide during the 1990s. Later they

go up to a relatively high level until 2003 in which there is a market trough. Though

both the PN and JK’s tail risks show the same trending pattern over the sample period,

there are obvious discrepancies between their estimated risk level. The magnitudes of

discrepancies are not merely a vertical location shift but changing over time. If we take

the PN series as a benchmark, the differences may due to overestimate of KJ’s method

as shown in the simulations.

[Figure 2]

It may be a surprise that there is no increase in both tail risks during 2007 to 2009, in

which the recent financial crisis happens. However, KJ and Brownlees, Engle, and Kelly

(2011) propose an explaination that the tail risk remains stable while the market volatil-

ity increases dramatically. They argue that an expanding of the threshold may absorb

the effect of changes in volatility, which keeps the estimates of the tail risk unaffected.

Their arguement coincides with Figure 3 which plots the lower tail threshold series of

both PN and JK’s methods and the realized S&P 500 index volatility. In Figure 3,

the thresholds of both methods go down strongly while the market volatility increases

drastically to the peak, during the finacial crisis period. Note that the thresholds of JK

are always the 5% quantile levels. And it is obvious that the threshold corresponding to
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the 5% level will be smaller in the year of heavy tail. In contrast, both the threshold and

its corresponding confidence level of our method are adjusting over the years that our

measure gives more freedom in assessing tail risk. Similar to the risk measure, our PN

estimated thresholds are always disproportionately lower than KJ’s fixed 5% thresholds.

[Figure 3]

4.2 Decomposition of Variance

Since the distribution is divided into tail part and non-tail part, total variance of re-

turns can be decomposed according to the law of total variance, also known as variance

decomposition formula, see Weiss, Holmes, and Hardy (2006). The law of total variance

states that if A1, A2, . . . , An is a partition of the whole outcome space and these events

are mutually exclusive and exhaustive, then

V ar(X) =
n∑
i=1

V ar(X|Ai)P (Ai)

+
n∑
i=1

E(X|Ai)2(1− P (Ai))P (Ai)

− 2
n∑
i=2

i−1∑
j=1

E(X|Ai)P (Ai)E(X|Aj)P (Aj).

(9)

The first part in this formula is the expectation of the conditional variance and the other

two components are the variance of the conditional expectation. In our current context,

the corresponding A1 is {X > θ} and A2 is the tail {X ≤ θ}. And, thus,

V ar(X) =V ar(X|X > θ)P (X > θ) + V ar(X|X ≤ θ)P (X ≤ θ)

+ E(X|X > θ)2(1− P (X > θ))P (X > θ)

+ E(X|X ≤ θ)2(1− P (X ≤ θ))P (X ≤ θ)

− 2E(X|X > θ)P (X > θ)E(X|X ≤ θ)P (X ≤ θ),

(10)
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where E(X|X > θ) and V ar(X|X > θ) are mean and variance of the non-tail part, and

E(X|X ≤ θ) and V ar(X|X ≤ θ) are mean and variance of the tail part.

In our PN model, the non-tail part of the PN model is a truncated normal distribution

with mean and variance,

E(X|X > θ) = µ+ σ
φ( θ−µ

σ
)

1− Φ( θ−µ
σ

)
, (11)

V ar(X|X > θ) = σ2

1−

(
φ( θ−µ

σ
)

1− Φ( θ−µ
σ

)

)2

+
θ−µ
σ
φ( θ−µ

σ
)

1− Φ( θ−µ
σ

)

 , (12)

where φ(ξ) is the probability density function of the standard normal distribution and

Φ(ξ) is its cumulative distribution function. The tail part of PN model is a pareto

distribution, of which the mean and variance are

E(X|X ≤ θ) =

{
∞ if α ≤ 1,
αθ
α−1

if α > 1,
(13)

V ar(X|X ≤ θ) =

{
∞ if α ∈ (1, 2],(

θ
α−1

)2 α
α−2

if α > 2.
(14)

It can be easily derived from Equation 10 to Equation 12 that, when α > 2, the variance

of the whole PN model is

V arPN(X) =rV ar(X|X > θ) + (1− r)V ar(X|X ≤ θ)

+ r(1− r)[E(X|X > θ)− E(X|X ≤ θ)]2

=rσ2

1−

(
φ( θ−µ

σ
)

1− Φ( θ−µ
σ

)

)2

+
θ−µ
σ
φ( θ−µ

σ
)

1− Φ( θ−µ
σ

)

+ (1− r)
(

θ

α− 1

)2
α

α− 2

+ r(1− r)

[(
µ+ σ

φ( θ−µ
σ

)

1− Φ( θ−µ
σ

)

)
−
(

αθ

α− 1

)]2

.

(15)

Thus the total variance, denoted as V arPN , is composed of three parts: rV ar(X|X >

θ), the variance of the truncated normal distribution multiplied by its weight r; (1 −
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r)V ar(X|X ≤ θ), the variance of the pareto distribution multiplied by (1 − r); and

r(1− r) [E(X|X > θ)− E(X|X ≤ θ)]2.

Next, we consider using KJ’s dynamic Hill estimators to construct the total variance

based on the variance decomposition formula Equation 10, Equation 13 and Equation 14.

To apply the Hill’s formula, we choose four different thresholds θ which are the 1st, 3rd,

5th and 7th percentile of the data. Note that KJ’s tail risk estimator corresponds to

the 5th percentile. For the tail part, the mean and variance are computed by using

Equation 13 and Equation 14 with α replaced by the reciprocal of the Hill estimator.

The mean and variance of non-tail part are calculated by sample mean and sample

variance using the data above the threshold. Finally, the total variance can be obtained

according to Equation 10, which is denoted as V arKJ . In the rest of this section, we

compares the computed total variances and the ture sample variances of the stock returns

in each month. Theoretically, the reconstructed total variance should match the market

variance calculated from the return data if the model is correctly specified. Deviation

between the two indicates potential misspecifications in the assumptions or calculations.

We plot the total variance computed from the two different methods as stated above.

Figure 4 exhibits the total variance calculated by using KJ’s Hill estimators with respect

to four different thresholds. If the threshold is fixed at the first percentile of the data,

the difference between the total variance V arKJ and the market variance is tiny, which

is plotted in Figure 4(a). However, it can be seen in Figure 4(b), (c) and (d) that as

threshold goes up, V arKJ deviates more from the market variance. The figure shows that

the computed total variance by the 1% threshold is very close to the market variance.

Figure 5 shows the total variance V arPN computed by the composite PN model. We

can see that V arPN is nearly identical with the market variance. The figure illustrates

that our PN model maps the tail risk to volatility through equation 15. This reflects
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our PN tail risk and the volatility both measure the same source of risk but in different

angles.

[Figure 4 and Figure 5]

In Figure 6, we plot the three components of the total volitility in Equation 15,

alongside with the market variance. As can be seen in the gragh, a large portion goes

to the non-tail variance, and the tail variance contributes the least. However, the three

components share the same cycling pattern over the years.

[Figure 6]

5 Application in Volatility Forecast

After the international stock market crash of 1987, modeling and forecasting volatility

of the stock market has become one of the major tasks of financial regulators, investors

and researchers. Volatility is often considered as a measure of asset’s or portfolio’s risk.

Investors and fund managers are always cautious when the volatility of their portfolio

surges. The volatilities of securities are also important for portfolio construction. Risk

averting investors may give more weights on assets which is less volatile in order to

maintain their portfolios at a low risk level. Meanwhile, volatility is critical for risk

management such as stress-testing and calculating value at risk.

In option pricing, the most popular pricing model for options on equity is developed

by Black and Scholes (1973). Other options pricing models are also developed after Black

and Scholes’ seminal work, e.g. Garman and Kohlhagen (1983)’s model for options on

futures, Seidel and Ginsberg (1983)’s model for options on currency futures. Since the

volatility of the underlying asset is an explicit parameter of any option pricing model, it is
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important to obtain the accurately forecasted volatility. Moreover, in volatility arbitrage,

future realized volatility of the underlying assets must be predicted by traders. Volatility

arbitrage is implemented by trading a delta-neutral portfolio containing an option and

its underlying asset. The purpose of this arbitrage is to take advantage of the differences

between the implied volatility of the option and a forecasted future realized volatility of

the underlying.

Besides the essential role of volatility in option pricing and hedging, an accurately

forecasted volatility is also useful to instruments which trade volatility directly, such as

variance swap, volatility swap, VIX futures contract and exchange-listed VIX option.

Therefore, volatility forecast is crucial in many financial pricing and trading activities.

The main stream volatility forecast model is the GARCH type model developed by

Engle (1982) and Bollerslev (1986). Variants of the GARCH model include the EGARCH

by Nelson (1991), J.P. Morgan’s RiskMetrics, GJR-GARCH by Glosten, Jagannathan,

and Runkle (1993), among others. Stochastic volatility models are also popular re-

cently, see Andersen, Davis, Kreiss, and Mikosch (2009) for a comprehensive summary

of volatility models and applications.

In this section, we investigate the predictive power of our proposed PN and JK’s tail

risk estimators in forecasting future volatilities. We follow Paye (2012) to focus on the

realized volatility,

LV OLt = ln(
√
mRVt), (16)

where LV OLt is the natural logarithm of annualized volatility in month t, and m cor-

responds to the number of periods within a year which is 12 here for monthly sampling.

RVt is defined as the realized monthly variance in month t, which is calculated by sum-
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ming up the squared daily returns,

RVt =
Nt∑
i=1

R2
i,t, (17)

where Nt is the number of trading days in month t and Ri,t denotes the daily excess

return on the S&P 500 index of the ith trading day in month t. In the following sections,

we conduct both in-sample and out-of-sample analysis for realized volatility forecast.

5.1 In-Sample Analysis

For the in-sample regression, we regress log volatility on tail risk and its own lag values,

LV OLt = β0 + β1TailRiskt−1 +
K∑
k=1

γtLV OLt−k + εt (18)

where LV OLt is defined as the natural logarithm of annualized volatility in month

t, and LV OLt−k represents the lagged volatilities. The TailRisk in the regression is

approximated by our PN estimator and KJ’s Hill estimator such that

LV OLt = β0 + β1

(
1

αt−1

)
+

K∑
k=1

γtLV OLt−k + εt,

LV OLt = β0 + β1λ
KJ
t−1 +

K∑
k=1

γtLV OLt−k + εt,

(19)

Table 4 shows the autocorrelation function (ACF) and partial autocorrelation func-

tion (PACF) of LV OLt. It can be observed from Table 4 that the PACF falls below 0.1

after lag5. Therefore, we choose 5 lags in our regression models, i.e. K = 5.

[Table 4]

The results of these two regressions are shown in Table 5. According to Panel A,

during the sample period from 1963 to 2010, the null hypothesis of no predictive power is

16



rejected for PN estimator at 10% significance level. On the contrary, Panel B indicates

that KJ’s Hill estimator is insignificant in the in-sample regression. The regression

confirms our previous result that the PN tail risk estimator maps well to the volatility

whereas the JK’s estimator falls short in reconstructing the overall volatility.

[Table 5]

5.2 Out-of-Sample Analysis

In this section, we investigate the out-of-sample predictive ability of the PN’s measure

and the KJ’s Hill estimator by conducting the recursive regressions based on regression

Equation 19. The initial estimating window is from January 1963 to December 1973, a

120 month period. We use the estimated regression coefficients to predict the volatility

in the next month t + 1. Then we expand the estimating window by one month to

include the t+ 1 data, and forecast the next month’s volatility using the new estimated

coefficients. We repeat this process until the whole sample is exhausted.

Figure 7 plots the recursive estimated coefficients β and the 95% confidence intervals

of both the PN estimator and the KJ’s Hill estimator from January 1973 to December

2010. The results show that the recursive estimated coefficients of PN tail risk are

significantly different from zero in the whole sample period. This demonstrates that

our PN tail risk has predictive power in forecasting future volatilities from an out-of-

sample perspective. On the contrary, Figure 7(b) shows that the estimated coefficients

of KJ’s Hill estimator are insignificant throughout the sample period. We can conclude

that KJ’s estimator has no predictive power in forecasting future volatilities in both

in-sample and out-of-sample perspectives.

[Figure 7]
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Next, we include other standard predictors for the volatility forecast for reference.1

The summary statistics of LV OLt, PN tail risk, KJ’s tail risk and other predictors

are calculated in Table 6. In each volatility forecasting regression, we use the tail risk

together with one predictor as follow,

LV OLt = β0 + β1TailRiskt−1 + β2Zt−1 +
K∑
k=1

γtLV OLt−k + εt (20)

where TailRiskt−1 is λKJt−1 or 1/αt−1 and Zt−1 is the predictor in question. Similar to the

previous out-of-sample regression, regression Equation 20 is conducted in the recursive

manner as described before.

[Table 6]

We adopt the out-of-sample R2 statistic to measure the forecasting perfomance,

R2
OoS = 1−

∑
(LV OLt+1 − L̂V OLt+1|t)

2∑
(LV OLt+1 − LV OLt)2

, (21)

where L̂V OLt+1|t is the out-of-sample prediction of the natural logarithm of annualized

volatility in month t + 1 and LV OLt is the historical average volatility through month

t. The higher the value of R2
OoS, the more predictive power the model entails. Note that

the R2
OoS can be negatively valued.

The R2
OoS are shown in Table 7. The first two rows are the forecasting models

correspond to Equation 19 and Figure 7 with only the TailRisk included. The rest of

the row corresponds to different combinations of tail risks and predictors in regression

Equation 20. The first two columns are the R2
OoS calculated using full sample data. We

can see most of the results associated with the PN tail risk outperform that of the KJ’s

1See the comprehensive description of the predictors in Welch and Goyal (2008). See also Paye
(2012).
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tail risk. For robust check, we split the sample into two sub-samples, the period from

1960 to 1986 and from 1987 to 2010. The forecasting results are shown in column 3 to

column 6. In the first sub-sample, most of the forecasting models associated with the PN

tail risk show higher R2
OoS than that of KJ’s tail risk. But there are four cases associated

with the PN tail risk show poorer performances than the KJ’s method. However, in the

second sub-sample, our PN tail risk far outperform the KJ’s method. The forecasting

results show that our proposed PN tail risk measure contains useful information in

forecasting volatility.

[Table 7]

6 Conclusion

This paper focuses on the tail risk measure in financial market. We conduct simulation

experiments to find out that their measurement is very sensitive to the selection of

threshold. To overcome the weakness of their method, we propose the composite PN

model which is a combination of a Pareto distribution and a Normal distribution. Monte

Carlo simulations show that the KJ’s method overestimates the tail risk in various

scenarios. We also examine the variance decomposition according to the law of total

variance and prove that, form this perspective, the performance of our composite PN

model is better than KJ’s approach.

Volatility forecasting is crucial for many aspects of financial market such as asset

allocation, asset pricing, and risk management. We try to link our tail risk model to

volatility prediction. The results demonstrate that the PN tail risk predicts the market

future volatilities, whereas KJ’s tail risk is lack of predictive power in volatility forecast.
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Paye, B. S. (2012): “Déjà vol: Predictive regressions for aggregate stock market volatil-

ity using macroeconomic variables,” Journal of Financial Economics, 106(3), 527–546.

Quintos, C., Z. Fan, and P. C. Phillips (2001): “Structural change tests in tail

behaviour and the Asian crisis,” The Review of Economic Studies, 68(3), 633–663.

Roy, A. (1952): “Safety first and the holding of assets, Economet rica 20: 431–449,” .

Seidel, A. D., and P. M. Ginsberg (1983): Commodities trading: foundations,

analysis, and operations. Prentice Hall.

Weiss, N. A., P. T. Holmes, and M. Hardy (2006): A course in probability. Pearson

Addison Wesley Boston, Massachusetts, USA.

Welch, I., and A. Goyal (2008): “A comprehensive look at the empirical perfor-

mance of equity premium prediction,” Review of Financial Studies, 21(4), 1455–1508.

22



Zhao, X., C. Scarrott, L. Oxley, and M. Reale (2010): “Extreme value mod-

elling for forecasting market crisis impacts,” Applied Financial Economics, 20(1-2),

63–72.

23



Table 1: KJ’s Hill estimators from simulated data based on PN distribution.
Panel A: n=10000

1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

1/α
0.2 0.2012 0.2054 0.2149 0.2264 0.2386 0.2516 0.2647 0.2784 0.2922 0.3063

(0.0204) (0.0145) (0.0118) (0.0106) (0.0101) (0.0096) (0.0091) (0.0088) (0.0087) (0.0086)
0.25 0.2490 0.2489 0.2520 0.2584 0.2668 0.2767 0.2875 0.2993 0.3115 0.3243

(0.0240) (0.0168) (0.0140) (0.0122) (0.0113) (0.0106) (0.0102) (0.0096) (0.0094) (0.0094)
0.3 0.2989 0.2994 0.2997 0.3015 0.3054 0.3113 0.3194 0.3286 0.3385 0.3495

(0.0301) (0.0219) (0.0171) (0.0149) (0.0136) (0.0128) (0.0120) (0.0113) (0.0110) (0.0109)
0.35 0.3496 0.3498 0.3494 0.3497 0.3508 0.3532 0.3578 0.3643 0.3717 0.3802

(0.0347) (0.0242) (0.0202) (0.0173) (0.0155) (0.0145) (0.0136) (0.0131) (0.0126) (0.0121)
0.4 0.4002 0.3999 0.4006 0.4004 0.4001 0.4003 0.4021 0.4055 0.4105 0.4171

(0.0406) (0.0274) (0.0229) (0.0201) (0.0178) (0.0162) (0.0149) (0.0140) (0.0135) (0.0129)
0.45 0.4507 0.4499 0.4497 0.4501 0.4500 0.4504 0.4503 0.4513 0.4539 0.4579

(0.0457) (0.0332) (0.0267) (0.0232) (0.0209) (0.0192) (0.0173) (0.0163) (0.0155) (0.0149)
0.5 0.4979 0.4993 0.4993 0.4990 0.4993 0.5000 0.4999 0.4998 0.5008 0.5027

(0.0512) (0.0360) (0.0293) (0.0251) (0.0228) (0.0201) (0.0185) (0.0177) (0.0166) (0.0157)
0.55 0.5515 0.5494 0.5506 0.5506 0.5510 0.5511 0.5510 0.5508 0.5508 0.5512

(0.0541) (0.0395) (0.0330) (0.0282) (0.0252) (0.0225) (0.0211) (0.0196) (0.0185) (0.0179)
0.6 0.5986 0.5983 0.5991 0.5994 0.5998 0.5994 0.5995 0.5997 0.5996 0.5997

(0.0616) (0.0444) (0.0375) (0.0319) (0.0285) (0.0259) (0.0237) (0.0223) (0.0209) (0.0196)

Panel B: n=50000

1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

1/α
0.2 0.1997 0.2040 0.2139 0.2259 0.2386 0.2516 0.2651 0.2787 0.2925 0.3066

(0.0091) (0.0066) (0.0054) (0.0050) (0.0046) (0.0043) (0.0042) (0.0040) (0.0042) (0.0040)
0.25 0.2501 0.2502 0.2526 0.2587 0.2673 0.2773 0.2882 0.3000 0.3123 0.3250

(0.0112) (0.0080) (0.0066) (0.0056) (0.0052) (0.0049) (0.0046) (0.0044) (0.0043) (0.0042)
0.3 0.2998 0.3000 0.2996 0.3013 0.3052 0.3115 0.3193 0.3284 0.3385 0.3494

(0.0137) (0.0099) (0.0081) (0.0070) (0.0063) (0.0058) (0.0053) (0.0051) (0.0050) (0.0049)
0.35 0.3503 0.3502 0.3501 0.3500 0.3506 0.3534 0.3581 0.3644 0.3720 0.3806

(0.0156) (0.0111) (0.0092) (0.0078) (0.0069) (0.0064) (0.0061) (0.0058) (0.0055) (0.0052)
0.4 0.3996 0.3999 0.4000 0.4001 0.4002 0.4004 0.4022 0.4055 0.4106 0.4170

(0.0176) (0.0128) (0.0100) (0.0089) (0.0082) (0.0075) (0.0070) (0.0065) (0.0062) (0.0059)
0.45 0.4508 0.4502 0.4500 0.4501 0.4501 0.4500 0.4502 0.4514 0.4540 0.4580

(0.0198) (0.0141) (0.0115) (0.0102) (0.0094) (0.0084) (0.0078) (0.0072) (0.0068) (0.0064)
0.5 0.5003 0.4996 0.4996 0.4996 0.4996 0.4996 0.4993 0.4995 0.5003 0.5022

(0.0216) (0.0152) (0.0127) (0.0108) (0.0098) (0.0089) (0.0082) (0.0076) (0.0073) (0.0071)
0.55 0.5486 0.5496 0.5497 0.5498 0.5498 0.5497 0.5498 0.5499 0.5501 0.5504

(0.0243) (0.0173) (0.0141) (0.0121) (0.0107) (0.0099) (0.0090) (0.0086) (0.0082) (0.0078)
0.6 0.5996 0.5997 0.5993 0.5997 0.6001 0.6001 0.6001 0.6002 0.6002 0.6001

(0.0263) (0.0184) (0.0151) (0.0135) (0.0124) (0.0111) (0.0102) (0.0096) (0.0092) (0.0089)

Panel C: n=100000

1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

1/α
0.2 0.2000 0.2042 0.2141 0.2259 0.2386 0.2516 0.2650 0.2785 0.2924 0.3065

(0.0065) (0.0045) (0.0038) (0.0033) (0.0030) (0.0029) (0.0028) (0.0027) (0.0027) (0.0027)
0.25 0.2500 0.2499 0.2524 0.2587 0.2673 0.2772 0.2882 0.2998 0.3120 0.3247

(0.0081) (0.0057) (0.0047) (0.0040) (0.0037) (0.0035) (0.0033) (0.0032) (0.0030) (0.0030)
0.3 0.3002 0.3001 0.3000 0.3014 0.3055 0.3117 0.3196 0.3286 0.3388 0.3496

(0.0095) (0.0068) (0.0054) (0.0047) (0.0042) (0.0038) (0.0036) (0.0035) (0.0033) (0.0032)
0.35 0.3501 0.3504 0.3504 0.3503 0.3510 0.3536 0.3583 0.3644 0.3720 0.3805

(0.0112) (0.0077) (0.0063) (0.0054) (0.0049) (0.0046) (0.0042) (0.0040) (0.0038) (0.0036)
0.4 0.4002 0.3999 0.4001 0.4001 0.4000 0.4003 0.4021 0.4055 0.4105 0.4169

(0.0125) (0.0091) (0.0074) (0.0063) (0.0057) (0.0052) (0.0049) (0.0045) (0.0043) (0.0042)
0.45 0.4492 0.4499 0.4499 0.4500 0.4499 0.4499 0.4500 0.4511 0.4537 0.4577

(0.0143) (0.0095) (0.0079) (0.0068) (0.0062) (0.0057) (0.0054) (0.0050) (0.0047) (0.0045)
0.5 0.4996 0.4996 0.4996 0.5000 0.4999 0.4999 0.4999 0.4999 0.5007 0.5027

(0.0155) (0.0109) (0.0089) (0.0077) (0.0070) (0.0064) (0.0059) (0.0056) (0.0052) (0.0050)
0.55 0.5496 0.5499 0.5503 0.5500 0.5501 0.5500 0.5501 0.5501 0.5501 0.5505

(0.0172) (0.0125) (0.0104) (0.0090) (0.0079) (0.0073) (0.0066) (0.0062) (0.0057) (0.0054)
0.6 0.5999 0.5994 0.5996 0.5996 0.5995 0.5996 0.5999 0.5998 0.6000 0.5999

(0.0190) (0.0137) (0.0113) (0.0096) (0.0085) (0.0077) (0.0072) (0.0066) (0.0063) (0.0060)

The table reports KJ’s Hill estimators computed using simulated data based on PN distribution. Panel
A, B and C respectively show the simulation results in three different sample sizes 10000, 50000 and
100000. For each 1/α and in each sample size, KJ’s Hill estimators are computed using ten different
thresholds which are the first to tenth percentile of the simulated data. The reported values are sample
average of the estimators over 1000 repetitions and the sample standard deviations are in parentheses.
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Table 2: Biases of KJ’s Hill estimators from simulated data based on PN distribution.

Panel A: n=10000

1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

1/α
0.2 0.60% 2.68% 7.43% 13.18% 19.30% 25.80% 32.36% 39.21% 46.09% 53.17%
0.25 -0.40% -0.44% 0.82% 3.35% 6.71% 10.67% 14.99% 19.73% 24.61% 29.74%
0.3 -0.36% -0.19% -0.09% 0.50% 1.80% 3.78% 6.48% 9.53% 12.83% 16.50%
0.35 -0.10% -0.05% -0.18% -0.07% 0.22% 0.92% 2.22% 4.08% 6.20% 8.63%
0.4 0.05% -0.03% 0.14% 0.11% 0.03% 0.07% 0.51% 1.37% 2.63% 4.26%
0.45 0.17% -0.03% -0.07% 0.03% 0.00% 0.09% 0.07% 0.30% 0.86% 1.75%
0.5 -0.41% -0.13% -0.15% -0.19% -0.14% -0.01% -0.02% -0.03% 0.16% 0.55%
0.55 0.27% -0.11% 0.12% 0.12% 0.19% 0.21% 0.17% 0.14% 0.15% 0.22%
0.6 -0.24% -0.28% -0.16% -0.09% -0.04% -0.10% -0.09% -0.05% -0.06% -0.05%

Panel B: n=50000

1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

1/α
0.2 -0.14% 2.01% 6.94% 12.94% 19.31% 25.82% 32.54% 39.36% 46.26% 53.32%
0.25 0.03% 0.06% 1.03% 3.50% 6.92% 10.91% 15.30% 19.98% 24.90% 29.98%
0.3 -0.06% 0.01% -0.13% 0.43% 1.73% 3.82% 6.44% 9.47% 12.82% 16.47%
0.35 0.09% 0.06% 0.03% -0.01% 0.17% 0.97% 2.30% 4.11% 6.27% 8.73%
0.4 -0.09% -0.03% 0.00% 0.02% 0.05% 0.11% 0.55% 1.38% 2.65% 4.25%
0.45 0.17% 0.04% 0.00% 0.01% 0.02% -0.01% 0.05% 0.32% 0.90% 1.78%
0.5 0.06% -0.08% -0.07% -0.08% -0.08% -0.07% -0.13% -0.10% 0.05% 0.43%
0.55 -0.25% -0.08% -0.06% -0.03% -0.04% -0.05% -0.05% -0.01% 0.01% 0.08%
0.6 -0.06% -0.05% -0.11% -0.04% 0.02% 0.01% 0.02% 0.03% 0.04% 0.02%

Panel C: n=100000

1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

1/α
0.2 0.02% 2.10% 7.03% 12.96% 19.28% 25.82% 32.50% 39.26% 46.20% 53.27%
0.25 -0.01% -0.04% 0.94% 3.46% 6.91% 10.89% 15.27% 19.93% 24.78% 29.88%
0.3 0.06% 0.02% 0.02% 0.47% 1.82% 3.91% 6.53% 9.55% 12.93% 16.55%
0.35 0.02% 0.11% 0.11% 0.09% 0.28% 1.04% 2.36% 4.12% 6.27% 8.72%
0.4 0.06% -0.02% 0.03% 0.03% 0.00% 0.07% 0.53% 1.37% 2.63% 4.23%
0.45 -0.18% -0.02% -0.03% -0.01% -0.02% -0.03% -0.01% 0.24% 0.82% 1.72%
0.5 -0.08% -0.08% -0.08% -0.01% -0.01% -0.03% -0.03% -0.02% 0.15% 0.53%
0.55 -0.08% -0.02% 0.05% 0.00% 0.02% 0.00% 0.01% 0.03% 0.02% 0.08%
0.6 -0.01% -0.10% -0.07% -0.07% -0.09% -0.06% -0.02% -0.03% -0.01% -0.01%

The talbe exhibits the percentage biases between the estimates in Table 1 and the true 1/α.
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Table 3: PN estimators from simulated data based on PN distribution.

1/α n=10000 n=50000 n=100000

Estimates Bias Estimates Bias Estimates Bias

0.2 0.1987 0.65% 0.1994 0.28% 0.1997 0.16%
(0.0156) (0.0071) (0.0049)

0.25 0.2496 0.15% 0.2499 0.06% 0.2499 0.02%
(0.0140) (0.0065) (0.0044)

0.3 0.2998 0.07% 0.2997 0.11% 0.2999 0.03%
(0.0139) (0.0061) (0.0044)

0.35 0.3499 0.03% 0.3499 0.04% 0.3500 0.01%
(0.0139) (0.0062) (0.0042)

0.4 0.3995 0.12% 0.4001 0.02% 0.4001 0.02%
(0.0140) (0.0063) (0.0045)

0.45 0.4496 0.08% 0.4499 0.03% 0.4499 0.02%
(0.0147) (0.0066) (0.0045)

0.5 0.4999 0.02% 0.4995 0.11% 0.4995 0.11%
(0.0159) (0.0113) (0.0088)

0.55 0.5471 0.53% 0.5476 0.44% 0.5486 0.26%
(0.0273) (0.0235) (0.0188)

0.6 0.5925 1.25% 0.5910 1.51% 0.5906 1.57%
(0.0453) (0.0489) (0.0493)

The table exhibits the sample averages and sample standard deviations (in parentheses) of
the PN model under three sampler sizes. Percentage biases are also reported.

Table 4: Autocorrelation function and partial autocorrelation function of LV OLt.

lag1 lag2 lag3 lag4 lag5 lag6 lag7 lag8 lag9 lag10

ACF 0.748 0.669 0.610 0.549 0.552 0.520 0.496 0.471 0.458 0.436
PACF 0.748 0.250 0.118 0.037 0.156 0.043 0.033 0.021 0.058 0.008

The table reports the autocorrelation function (ACF) and partial autocorrelation function (PACF) of
LV OLt.
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Table 5: In-sample analyses of realized volatility forecasts.

Panel A: In-sample analysis for PN tail risk
R2=0.6026

Coefficient t-statistic p-value

1/αt−1 0.5011 1.94 0.0530
LV OLt−1 0.5088 10.59 0.0000
LV OLt−2 0.1610 3.19 0.0010
LV OLt−3 0.0726 1.4 0.1620
LV OLt−4 -0.0385 -0.84 0.4030
LV OLt−5 0.1548 3.67 0.0000

Panel B: In-sample analysis for KJ’s Hill tail risk
R2=0.6014

Coefficient t-statistic p-value

λKJt−1 -0.2813 -1.34 0.1810
LV OLt−1 0.5063 10.56 0.0000
LV OLt−2 0.1638 3.29 0.0010
LV OLt−3 0.0733 1.41 0.1590
LV OLt−4 -0.0437 -0.96 0.3390
LV OLt−5 0.1591 3.74 0.0000

The table reports the results of in-sample regressions of LV OLt on the PN and KJ’s Hill tail
risks. The sample period is from 1963 to 2010.
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Table 6: Summary statistics of LV OLt, PN tail risk, KJ’s Hill tail risk and other
predictors.

mean std skewness kurtosis JB test
p-value

LV OLt -2.0959 0.4715 0.4219 3.9553 <0.001
1/α 0.2986 0.0447 -0.3157 4.1998 <0.001
λKJ 0.4275 0.0561 -0.4550 2.6337 <0.001
Log dividend price ratio -3.5588 0.4107 -0.4052 2.3634 <0.001
Log dividend yield -3.5536 0.4110 -0.4106 2.3858 <0.001
Log earning price ratio -2.8236 0.4600 -0.7545 5.4924 <0.001
Log smooth earning price ratio -3.0647 0.3542 -0.0957 2.5455 0.051
Log dividend payout ratio -0.7351 0.3171 3.0316 19.1921 <0.001
Book to market ratio 0.5198 0.2726 0.5818 2.3683 <0.001
T-bill rate 0.0539 0.0291 0.8016 4.4686 <0.001
Term spread 0.0174 0.0153 -0.2316 2.6092 0.017
Default yield spread 0.0104 0.0047 1.6259 6.5521 <0.001
Default return spread 0.0001 0.0143 -0.3028 10.4726 <0.001
Inflation 0.0034 0.0035 -0.1228 7.1308 <0.001
Log total net payout yield -2.2211 0.2242 -1.4142 6.2465 <0.001

The table reports the summary statistics of LV OLt, PN tail risk, KJ’s Hill tail risk and other
predictors. Default return spread is the difference between long-term corporate bond and long-term
government bond returns. Default yield spread is the difference between the yield on BAA-rated
corporate bonds and the yield on long-term US government bonds. Term spread is the difference
between the long-term yield on government bonds and the Treasury bill rate.
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Table 7: Volatility forecast performances measured by out-of-sample R2
OoS.

Full sample 1963-1986 1987-2010

1/α λKJ 1/α λKJ 1/α λKJ

1/α 0.4474 - 0.4955 - 0.3291 -
λKJ - 0.3862 - 0.4025 - 0.1279
Log dividend price ratio 0.4272 0.3908 0.4368 0.4135 0.3024 0.1534
Log dividend yield 0.4427 0.3841 0.4811 0.4182 0.2797 0.1624
Log earning price ratio 0.3595 0.3994 0.1970 0.4373 0.3448 0.2047
Log smooth earning price ratio 0.3822 0.4086 0.2740 0.4509 0.3083 0.1457
Log dividend payout ratio 0.4158 0.4055 0.3799 0.4560 0.3474 0.1393
Book to market ratio 0.4094 0.4152 0.3766 0.4760 0.3173 0.1726
T-Bill rate 0.4577 0.3868 0.5169 0.3458 0.3284 0.0032
Term spread 0.4526 0.3943 0.5153 0.4291 0.3127 0.1122
Default yield spread 0.4565 0.3922 0.5193 0.4043 0.3589 0.1636
Default return spread 0.4682 0.4085 0.4960 0.4043 0.4173 0.2343
Inflation 0.4556 0.4073 0.5229 0.4451 0.3285 0.1172
Log total net payout yield 0.4421 0.3620 0.4731 0.3581 0.3443 0.1768

The table reports the out-of-sample R2
OoS of Equation 20. The first two columns are the out-of-sample

R2
OoS calculated using the full sample data associated with PN tail risk and KJ’s Hill tail risk. The

R2
OoS by sub-samples,1963-1986 and 1987-2010 are reported in the third to sixth columns.
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Figure 1: The density plots of the composite PN distribution with different α.

Plotted are the density of composite PN distributions with parameters 1/α = 0.2, 1/α = 0.4 and
1/α = 0.6, setting µ = 0 and σ = 1.
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Figure 2: The KJ’s Hill tail risk and the PN tail risk from January 1963 to December
2010.
Plotted are the KJ’s Hill tail risk and the PN tail risk time series during a period from January 1963 to
December 2010. KJ’s Hill tail risk is calculated each month by using fifth percentile as threshold. The
PN tail risk is a parameter in composite PN model and is estimated by conducting maximum likelihood
estimation.
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Figure 3: Threshold series of the KJ’s Hill tail risk and the PN tail risk from January
1963 to December 2010.
Plotted are the threshold series associated with the KJ’s Hill tail risk and the PN model during the
period from January 1963 to December 2010. Fifth percentile is used as threshold of KJ’s Hill estimators.
Threshold of composite PN model is estimated by the maximum likelihood method.
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(a) 1% Threshold (b) 3% Threshold

(c) 5% Threshold (d) 7% Threshold

Figure 4: Total variance computed using KJ’s method corresponding to four thresholds.

The plot exhibit the total variance calculated by using KJ’s method with four different thresholds θ which corresponds to the 1st, 3rd,
5th and 7th percentile of the data.

33



Figure 5: Total variance computed using the PN model.

Plotted is the total variance V arPN computed from Equation 15 by using the composite PN model.
Also plotted is the true variance calculated from original data.
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Figure 6: The three part decompositions of the total variance from the PN model.

Plotted are the three part decompositions of the total volitility, which are rV ar(X|X > θ), variance
of the truncated normal distribution multiplied by its weight r, (1− r)V ar(X|X ≤ θ), variance of the

pareto distribution multiplied by (1−r), and a component r(1−r) [E(X|X > θ)− E(X|X ≤ θ)]2. Also
plotted is the market variance calculated from pooled monthly data.
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(a) PN tail risk

(b) KJ’s Hill tail risk

Figure 7: Recursively estimated coefficient β1 and its 95% confidence interval in volatility
forecasting regression.

This figure demonstrates the recursively estimated coefficients β1 and the confidence intervals at 95%
level of the out-of-sample regression of LV OLt on the PN tail risk and the KJ’s Hill tail risk from
January 1973 to December 2010.
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