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ABSTRACT 

Molecular docking is an indispensable tool in computer-aided drug design.  Given a 

target protein related to the disease of interest, molecular docking helps to decide if a 

small molecule called ligand is able to bind to the protein’s binding pocket with 

certain level of affinity. Protein-ligand docking consists of two main steps: A 

conformation (a possible configuration of the molecule structure) is generated by 

conformational search algorithm and then the conformation is evaluated by a fitness 

function. The conformation which has the best value returned by the fitness function 

will be determined as the predicted structure. To be able to search quickly and 

intelligently over the huge conformational space is necessary in the virtual screening 

step of drug design, where millions of ligands in a drug compound library will have to 

be screened through by docking. In recent years, swarm intelligence algorithms have 

emerged as a fast and reasonably accurate technique in solving complex search 

problems in computer science. But the applicability of this technique has not been 

fully explored in the molecular docking problem. 

Therefore, in this project one of the most popular swarm intelligence algorithms,   

particle swarm optimization (PSO) was studied for their applicability to the ligand 

conformational search problem in protein-ligand docking. The algorithm is, for the 

first time, implemented into the popular docking program AutoDock Vina, here called 

PSOxVina. Using a benchmark dataset of 201 experimental protein-ligand complexes, 

the prediction accuracy and time efficiency for docking pose prediction were 

rigorously tested. Remarkably, PSOxVina completes the docking process in only 54% 

of the time used in AutoDock Vina, but the prediction accuracy is increased by 7% 

measured by the averaged RMSD of the predicted structures from experimental 

structures. Our work demonstrates that PSO is superior to conventional search 

algorithms such as Monte Carlo in molecular docking. 
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CHAPTER 1. INTRODUCTION 

1.1 Overview  

Drug design aims to discover a new medication. Newly developed drugs help people 

to prevent and to recover from diseases. Drug not only cures human being even 

animal and plant may suffer from diseases and need medical treatment, thus drug is 

always in a great demand.  In pharmaceutical industry, traditional drug discovery is a 

long-term process but it is also the most profitable business. However to find a new 

medicine is expensive, especially in terms of human resource, time and money. 

Normally, a drug from design to deliver to patient, it takes 12 years and 

approximately US$359 million [1] then the scientists started to look for a cheaper 

solution for the development process. They tried to model the disease molecules to 

study their molecular properties and to design drugs which can disrupt the pathogenic 

activities of the molecules. With the aid of powerful computers and advanced 

algorithms, the time to identify candidate drug molecules in the pre-experimental 

screening process can be greatly reduced. This area of drug development using 

computational techniques is called the computer-aided drug design (CADD). 

Nowadays, CADD becomes an important step in drug discovery [2]. The CADD 

software helps scientists to find out a few drug candidates from a million of chemical 

compounds. CADD can be classified into two types: (1) ligand-based and (2) 

structure-based. Ligand-based drug design depends on the chemical properties of 

ligand molecules to construct predictive models of new ligand without knowledge of 

the structure of the disease molecule. In contrast, structure-based drug design relies on 

the three dimensional structure of the target molecule. And by virtue of a search 

process it quickly finds out the possible docking poses of a ligand and ranks them by 

the strength of binding. This search process which places the ligand into the known 

protein structure is called docking.  

The principles of docking are searching and scoring. There are many search 

algorithms such as Monte Carlo (MC), Simulated Annealing (SA), Genetic Algorithm 

(GA) and Swarm Intelligence (SI). In particular, Particle Swarm Optimization (PSO), 

one of the most popular SI algorithms, has gained some success in other 

bioinformatics tasks which need to look for optimal solutions from huge search spaces.  

Recently, there are also a few implementations of PSO on docking programs which 

show encouraging results, such as PSO@AutoDock[3] and FIPSDock[4].  

Recently, a well-known docking software research group (The Scripps Research 

Institute) has released a new version of the docking software called AutdoDock Vina 

that has different programming structures and principles compared with the previous 

version AutoDock 4. Their test result showed a 29% improvement in accuracy and 

saving 500% of computing time [3]. It is a big contribution to the molecular docking 

field. Even the new version did improve on accuracy and faster, but it is still far from 

being perfect. As mentioned, PSO gained an improved performance in previous 

version of AutoDock but has not been tested in AutoDock Vina. Thereby, it gives me 

an opportunity to make an experimental test that is integrating PSO into Vina.  
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1.2 Objective 

This project has two goals. Firstly, it is to establish the pipeline to automate the 

docking process. Before the protein and ligand pass to the docking software, a series 

of works have to be done manually. For example, a ligand has to remove useless 

atoms like water and metal ions and to add polar only hydrogens, locate and measure 

the binding pocket (search space) of the protein. To achieve this goal, some shell 

scripts and python programs will be implemented. Secondly, I aim to apply PSO on 

the AutoDock Vina docking program to reduce the time in searching for the best 

ligand pose while maintaining at least the same accuracy as the original AutoDock 

Vina. For this purpose, PSO will be implemented and tested with a large data set of 

high-resolution experimental protein-ligand structures.  

1.3 System Environment 

A docking process consists of many computational procedures, to provide the 

hardware configuration as a reference is important. Higher performance hardware you 

get, the shorter time you can achieve.  

CPU Intel Core i7 CPU 860@2.8GHz 

RAM 4GB DDR3 1333MHz 

Hard Disk 320GB SATA2 7200rpm 

Graphic Card ATI HD3450 

Table 1: Hardware configuration of the working PC 

My work was conducted in a desktop computer with hardware configurations shown 

in Table 1. Ubuntu Linux 11.04 was installed and AutoDock Vina requires installing 

the boost library, in my PC version 1.4.1 was installed. I compiled the source code by 

using GCC 4.5.2. I used PyMol 1.6 as a visualization tool to view the protein and 

ligand structures, this tool also allow users to do some modifications on the molecules.  
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CHAPTER 2. BACKGROUND 

2.1 Protein Receptor and ligand 

Protein is an organic compound that is the most complex chemical entities no matter 

in size, shape or texture. It consists of a sequence of amino acids joined hand-in-hand 

by peptide bonds. A protein structure can be characterized by its primary structure, 

secondary structure, and tertiary structure.  A primary structure is a linear sequence of 

amino acids it starts from amino-terminal end to carboxyl-terminal end. Another 

distinct characteristic is secondary structure depends on hydrogen bonding. Two types 

of secondary structure are alpha helix and beta sheet. By virtue of the folding process, 

a linear chain of amino acid will be folded into a three-dimensional structure with 

which the protein acquires its function.  

Many proteins, especially drug-targeted proteins, function as receptors. A receptor is a 

protein molecule which exists in the surface or inside the cell. A receptor can 

recognize and bind another molecule analogous to signal receiving. A molecule which 

can bind to a receptor is called a ligand, and the space that allow a ligand bound to the 

protein is called the binding pocket. When a ligand binds to the receptor, it is 

analogous to sending a signal to the receptor and the receptor will react on it. In 

pharmacology, a drug which has the same chemical properties of the natural ligand 

will be selected to inhibit the biological activity of the receptor, thus it is also called 

inhibitor.  

Human Immunodeficiency Virus (HIV) Type 1 is a marked example. To cure HIV, 

bio-scientist tried to discover a ligand to inhibit its activity by interrupting the DNA 

replication process. In the HIV virus life cycle, HIV protease plays an important role. 

The virus relies on the HIV protease to reproduce itself. The protease cuts the virus 

polypeptide into pieces to create mature protein component which then starts to infect 

other cells. The HIV protease inhibitor inhibits the protease activity by binding to the 

protease’s activity site and subsequently prevents the virus to reproduce itself.   

2.2 Docking 

Docking is a computational method used to predict the best binding conformation of a 

ligand in the protein’s binding pocket. Figure 1 shows the pipeline of the docking 

procedure. In a docking program, the two important components are the scoring 

function and the search algorithm. A scoring function is a mathematical function to 

evaluate the binding free energy of a ligand binding to a protein. Because a ligand can 

be placed at different positions and orientations with respect to the protein, and can be 

adopted different torsional states which might affect the binding, the binding free 

energy would be changed according to these conformational states dramatically. It is 

difficult to find the globally optimal binding conformation from all possible 

conformational states because the entire search space is huge. Thus an efficient 

searching algorithm takes the responsibility to determine whether an optimal solution 

is reached. These two components rely on each other: If a scoring function is not 

accurate enough no matter how efficient the search algorithm works, it is hard to find  

the lowest energy conformation of the ligand at the protein pocket. On the other hand, 

if the scoring function is accurate but the search algorithm is not fast enough to find 
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the best solution because the searching is like looking a needle in a haystack then it is 

still difficult to find the best ligand pose. Figure 2 shows a HIV1 protein and ligand 

before and after docking, the bottom image shows the ligand binds to the protein with 

the best pose. 

Select 
receptor

Select ligand

Prepare 
receptor

Prepare 
ligand

Docking
Ranking of 

ligand 
docked poses

 

Figure 1 Flowchart of performing docking study  

 

 

 

 

Figure 2: The Human Immunodeficiency Virus Type 1 protein (left); a ligand molecule (middle); 

the ligand-bound complex (right). 

2.3 Search Algorithms in Docking  

As the search algorithm is important, apply a suitable algorithm is essential. An ideal 

search algorithm should be able to find the most energetically favourable 

conformation (global minimum) in the search space. There are two approaches in 

searching: (1) a search on the entire solution space systematically, and (2) a guided 

search exploring part of the solution space. The former is a comprehensive search 

examining all possible translation, orientation, torsional states of a ligand in the 

protein pocket, whereas the latter applies changes (with some randomness) in the 

ligand conformation intelligently followed by local optimization. Popular guided 

search algorithms include Monte Carlo, simulated annealing and evolutionary 

algorithms such as genetic algorithms and swarm algorithms. In the following 

sections, we will introduce two evolutionary algorithms: genetic algorithm and 

particle swarm optimization. 
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2.3.1  Genetic Algorithms 

Genetic algorithms were formally introduced in the United States in the 1970s by 

John Holland at University of Michigan [5]. This algorithm is trying to simulate the 

creature evolution and rules by using such as gene, chromosome, mutation, crossover, 

applying these principles to global search and optimization. In genetic algorithms, the 

solutions of the problem are called individuals some may call them as a genomes. The 

solutions may consist of a series of properties and evolves like a natural populations 

which represent in digit in the memory over time. A particle way of genetic 

algorithms is initial populations of individuals and begin evolve over iterative process, 

each iterative is called generation. In each generation, every individuals will be 

evaluated by a fitness function, generally the fitness function is the objective function 

itself. The individuals will be ranked by their fitness value compare with the previous 

generation. The best one will be selected to the next generation. The algorithms will 

be terminated at the maximum number of generations or an acceptable fitness value 

has been reached. 

2.3.2  Particle Swarm Optimization 

Particle Swarm Optimization (PSO) is in reference to James Kenndy and Russell 

Eberhart paper and was trying to simulate the social behaviour of birds flock or fish 

school [6]. In PSO, the flock of birds in looking for food is simulated. When one of 

the birds finds food at its current location, it then informs the others and all the birds 

are trying to move close to that location. The best solution to this problem is the food 

location. Each bird is called a particle defined by a vector of variables analogous to 

the bird’s current location. A number of particles are used to represent a bird flock 

and each of the particles is a candidate solution. The entire area that the birds 

searching for food is the search space which is a combination of all possible values of 

all variables allowed in the vector for a particle. Imagine a bird is flying on the sky, a 

bird has it owns experience and able to use it to determine the flying direction and 

velocity. In PSO, a flock of birds flying at the same time. Each single bird can fly 

based on its own experience on the possible location of food (the so-called personal-

best position).  Its search strategy will also be affected by knowledge of all other birds’ 

experiences (the so-called global-best position). From these two pieces of information, 

the bird will decide the direction and speed of the movement.  

Define the number of particles 

Initialize the position and the velocity of each particle 

Loop until stopping condition is met  

 For each particle  

  Evaluate fitness function based on the particle position  

  If fitness value better than the personal best value 

   update the personal best position to the current position 

   If fitness value better than global best value 

    update the global best position to the current position 

   End if 

  End if 

    

  Update the velocity (use Equation 1) 

  Compute the new position from the new velocity (use Equation 2) 

   

 End for 

End Loop 

Figure 3: Pseudo code of the standard PSO algorithm.  

vi(t+1) = w*vi(t) + c1*rand() * ( pbesti(t) – xi(t) ) Equation 1  
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+ c2 * rand() * ( gbest(t) – xi(t) )  

xi(t+1) = xi(t) + vi(t+1) Equation 2  

where xi(t) is the position of the particle i in the t
th

 iteration, and vi(t) is the velocity of 

the particle i in the t
th

 iteration. Variable pbest and gbest are the personal-best and the 

global-best values. 

Figure 3 shows the process of PSO in each iteration and the equations for position-

update and velocity update are shown in Equation 1 and Equation 2.  An objective 

function is required to evaluate the fitness of each move. In addition, a particle 

decides to move to the next step, a randomness factor is being considered to prevent 

local minimum trap. There are two parameters used to derive the velocity in the next 

iteration (see Equation 1). The c1 and c2 parameters are known as the acceleration or 

the learning coefficients. They determine the weight of personal best and global best. 

Function rand() generates a random number and w is the inertia weight. If w=0 the 

new velocity is only determined by the personal and global best positions, each step 

of movement will be smaller. In other words, it will become more like a local search. 

When the value of w is larger, the search will become a global search. 

Some papers specify a communication topology between the birds. They may enclose 

in ring, square, etc. but their concepts are the same,  i.e. to gather information from 

others. 

2.4 Scoring Function 

As mentioned, scoring function is one of the critical components of docking. A 

perfect scoring function can evaluate the interaction between protein and ligand 

rapidly and accurately. There are three applications using scoring function in protein-

ligand docking [7]: (1) Determine the binding site and the binding mode, (2) calculate 

the binding affinity, (3) for virtual screening. The second one should be focused 

because in this project the scoring function is used to calculate the binding affinity of 

the protein-ligand interaction. In AutoDock Vina, the scoring function was inspired 

by the knowledge-based X-score function and parameterized using the PDBbind 

protein-ligand complexes data set. It includes physical atomic interactions such as van 

der Waals interactions and electrostatic interactions (Coulombic interaction), and 

bond rotations. The general form of the AutoDock Vina scoring function is: 

   ∑          

   

 
Equation 3  

 

where i stands for a protein atom, j stands for a ligand atom. rij is the distance between  

them. For each kind of atom, assigned a type t, and a symmetric set of interaction 

function ftitj of the protein-ligand atom distance. The interaction function is defined by  

ftitj (rij  ≡ htitj (dij) Equation 4  
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where dij = rij −Rti − Rtj , where Rt is the van der Waals radius of atom type t and htitj 

is the weighted sum of five different types of interactions between all protein and 

ligand atom pairs, including three different types of hydrophobic interactions and 

hydrogen bonding interactions.  

2.5 Docking with AutoDock 

AutoDock is a computational docking software set, it is used to predict molecular, and 

bind to a receptor of known 3D structure and wildly use in drug design. This software 

set was developed by The Scripps Research Institute. TSRI locates in San Diego, 

California, is one of the most well-known research and education in biomedical 

sciences and the largest non-profit, private biomedical research organization. Up to 

date, there are two current distributions of the AutoDock docking programs: 

AutoDock 4 and AutoDock Vina. AutoDock 4 is under GNU General Public License 

and Vina is under Apache License.  Both of them are free to download and open 

source. AutoDock Vina is a brand new generation, TSRI re-designed the whole 

programe even for the searching algorithm and scoring function. AutoDock 4 uses 

Lamarckian Genetic Algorithm for the lowest energy conformation search only and 

Vina uses Monte Carlo to perform global searching as a global minimum is the lowest 

energy value of a collection of local minima, to perform the local search, Vina uses 

Broyden-Fletcher-Goldfarb-Shanno (BFGS) as an algorithm for nonlinear 

unconstrained optimization [3]. The new version was proved to be successful, 

generally it improves the accuracy. From Figure 4, the chart shows that the 190 

docking complex which RMSD<2 Å  increase 29% compare with AutoDock 4 Vina 

also allows multithreading on multicore machine, so it speedup the docking process 

significantly compared with AutoDock4, From Figure 5, a single threaded Vina runs 

62 times faster than AutoDock4, a multithreaded Vina runs 7.25 times faster when 

using 8 cores on the testing machine. 

 

Figure 4: The fraction of the 190 test complexes for which RMSD < 2Å  was achieved by AutoDock 

and Vina [3]. 
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Figure 5: Average time, in minutes per complex, taken by AutoDock, single-threaded Vina and Vina 

with eight-way multithreading. Machines with two quad-core 2.66GHz Xeon processors were used in 

the experiment. [3] 

There are numerous AutoDock-derived docking programs with improved accuracies 

and computational efficiencies. Regarding the latter, there is a recently developed 

Vina-based docking program called QuickVina.  The authors of QuickVina found that 

Vina uses Monte Carlo as the global search method. The Monte Carlo consists of 

random mutation and local search uses Quasi-Newton method together with BFGS. 

The authors stated that the highest computational cost is the local search, BFGS – an 

approximate method to Newton method. Calculating first and second order of 

derivatives, it is the most expensive calculation within the Monte Carlo. QuickVina 

trying to reduce the computational cost of local search, they stated that searching a 

global minimum means looking a stationary point where its gradient=0. By the sides 

of the stationary point, the curve may be decreasing or increasing where its derivative 

sign is negative or positive. By this principle, a database have to store all the points 

that have been reached by local search before and if the current point is opposite sign 

with its stored neighbor points then local search of the current point can be performed. 

The test result shows reduce the running time of docking from 6,640 seconds—

roughly 1 hour and 50 minutes—to merely 263 seconds, which is 4 minutes 23 

seconds [8]. 

2.6 Application of PSO on the docking problem   

As mentioned previously, the use of PSO on the docking program has not yet been 

fully explored. Until now, there were only two studies implementing PSO on docking 

programs. They are PSO@AutoDock and FIPSDock.    

2.6.1  PSO@AutoDock 

PSO@AutoDock is a variant version of AutoDock 3, a previous version of AutoDock 

4. It was developed by  Institute of Biochemistry, University of  Leipzig. The research 

group saw the shortage of basic PSO, they changed the velocity formula, improve the 

way that the particles updated velocity and using local search strategy then 

reproduced based on PSO, they called varCPSO and varCPSO-ls [3]. varPSO is a 

short form of velocity adaptive and regenerative CPSO which is an extension of the 

traditional Constricted Particle Swarm Optimization together with the velocity update 

which is only update the velocity when the current iteration fitness value is worse than 

the previous one. The advantage of varPSO is speed-up the particles move in the 
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search space and reduce the computational cost. varCPSO-ls is based on varPSO and 

involved local search strategy. For each iteration, the original PSO will calculate the 

velocity according to the global best and personal best. However, in this algorithm 

each iteration the lowest binding energy particle will be considered as swarm best. 

The swarm best will be used to instead of global and personal best as well as this 

particle will be flag marked and going for local search by maximal 50 optimization 

steps [3]. Other particles will move according to their experiences (global best and 

personal best). 

2.6.2  FIPSDock 

FIPSDock is a variant algorithm of PSO introduced by Y. Liu et al. FIPS stands for 

fully informed particle swarm. In FIPS the particles communication and the source of 

information to adjust the velocity are different from the original PSO. FIPS states that 

it is essential to have a suitable topology for the particles changing information. 

Hence, FIPS uses URing as the topology to solve the complex conformational 

sampling problem. In URing topology, all the particles are connected to its neighbours 

and update the velocity based on the neighbour information. Later FIPS was applied 

to AutoDock 4 by using the scoring function which was defined by default, the results 

were compared with published results for a few state-of-the-art docking programs 

including PSO@AutoDock, SODOCK, AutoDock, Glide, GOLD, FlexX, Sur- flex, 

and MolDock. FIPSDock has obtained a successful predicting rate of 93.5% 

(successful docking run with RMSD < 2Å ) for 77 complexes and outperformed all 

other docking programs [4].  
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CHAPTER 3. Design 

In this project, our goal is to investigate the applicability of PSO on the protein-ligand 

docking problem in terms of time efficiency and prediction accuracy. To this end, a 

reliable data set of protein-ligand complexes is required as a measurement of 

performances. The PSO algorithm is designed and implemented into the AutoDock 

Vina replacing the original Monte Carlo search algorithm.  In addition, in order to 

conduct the tests efficiently, an automated pipeline is implemented to pre-process the 

structural data before feeding them to the docking program. Results will be collected 

and assessed in an automated fashion. In this chapter, we will present the details of 

the test data, the design of the automated docking pipeline and the data structure 

design of the PSO implementation for optimal ligand-pose search. 

3.1 The Data 

The PDBbind database used in this study was released in 2012. It contains 201 

protein-ligand complexes as well as the binding affinity data of those complexes. The 

PDBbind database was originally developed by Prof. Shaomeng Wang's group 

(http://sw16.im.med.umich.edu) at the University of Michigan in USA. There are two 

distributions, one is called the “core set” and another one is called the “refined set”. 

These two sets were filtered from 87,085 proteins which determined the structures by 

experiment. The refined set selected protein-ligand complexes from the 87,085 

proteins with better quality and need to match several filters regarding the binding 

data. The core set data is selected from the refined set as follows: For each family 

which contains at least five members, the highest, the lowest and the medium binding 

structures were selected as the representatives of the family [9]. Because the data set 

contains representative structures and diversely covering all known protein-ligand 

complex families, the core set is suitable for validating prediction models. In my 

project the core set will be used.  

Each complex in the core set, named with its PDB ID contains a structure of the 

protein, the ligand, as well as the binding pocket. There are in total 201 complexes in 

the core set. As shown in Figure 6, there are mostly small ligands, with the number of 

rotatable bonds (torsion size) between 0 and 10. There are relatively few mid-size 

ligands, and rarely ligands with torsion sizes > 16.  
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Figure 6: Distribution of ligand’s torsion size in the PDBbind core set. 

3.2 Pipeline Automation  

Figure 1 and Figure 8 presents the pipeline of docking. Before I implemented the PSO 

in AutoDock Vina, I would like establish an automated script to select molecules and 

calculate the binding pocket size.  
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Figure 7 Pipeline of the automated pre-docking process  

For each protein-ligand complex 

 Select ligand  

 Add Gasteiger charges, add hydrogen, merge non-polar hydrogen, assign atom type 

and calculation torsion degree of freedom  

 Generate modified ligand in PDBQT file format 

 Select protein 

 Add Gasteiger charges, add hydrogen, merge non-polar hydrogen, remove waters 

and assign atom type  

 Select ligand (actually you derive the pocket position by the ligand position, 

and not directly selecting the pocket) 

 Estimate the size of the binding pocket 

 Randomize the ligand structure 

 Generate docking configuration file 

 Docking with Vina  

End For 

Figure 8 Pseudo code of the automated pipeline  
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3.2.1  Selection 

Given the PDB ID of a protein-ligand complex, the script itself should be able to 

select the suitable receptor with the corresponding ligand. According to my test data 

set, for each protein, the data set gives a protein structure, protein binding pocket 

which contains a bunch of atoms that around the binding pocket and a bound ligand 

structure. 

3.2.2  Structure Files Preparation 

One of the most common file formats for 3D molecular structures is the Protein Data 

Bank (PDB) format. However, in AutoDock Vina it only supports PDBQT with ‘Q’  

an addition of Gasteiger charges and ‘T’ for AutoDock atom type. In addition, PDB 

file has some problems of missing atom, added waters, more than one molecule, chain 

breaks, alternate locations, etc. [10] 

From the AutoDock ligand and receptor tutorial [10], a ligand before docking should 

be done with the following operations: (1) If no partial charge or if each of the 

charges is zero, Gasteiger charges should be added for the entire ligand, (2) add 

hydrogen atoms, (3) merge non-polar hydrogen, (4) assign AutoDock atom type to 

each atom, and (5) calculate the torsion degree of freedom, then the ligand PDBQT 

file is ready. For receptor structure, it should be done with the following: (1) If no 

partial charge or if each of the charges is zero, Gasteiger charges should be added to 

each atom, (2) add hydrogens, (3) merge the non-polar hydrogens, (4) remove waters, 

and (5) assign AutoDock atom type to each atom then the receptor PDBQT file is 

ready. 

3.2.3  Search Space Calculation 

Before passing the receptor and ligand files to the docking program, we have to 

specify the search space. The search space should cover the whole binding pocket. If 

defined search space can perfectly fit to the pocket, it helps to save the docking time 

and more accurate for docking because the solution space is smaller. Hence the pocket 

structure with each atom 3D-coordinates is given where the search space centre can 

be calculated by: 

 

{
 
 

 
    

∑   
 
   

 

   
∑   

 
   

 

   
∑   

 
   

 

 

Equation 5  

 

where n is the number of atoms in the binding pocket. And the length of the each 

dimension can be calculated in following equation:  
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{

       −     

       −     

       −     

 

Equation 6  

 

Where the subscript max and min represent the largest and smallest coordinates found 

for each dimension.  

3.3 Particle Swarm Optimization  

In the previous chapter, PSO algorithm has been shown in pseudo code (Figure 3). By 

the concept of PSO, such as a flock of birds, bird movement and movement factor, 

choosing a suitable architecture can make the logic and coding more clear.  In Vina, 

C++ programming language has been used. C++ provides object-oriented 

programming, it is easy to implement PSO on C++ by using the idea of object with 

associate methods. 

 

Figure 9 Abstract Class Diagram of PSO  

 

Figure 10 Vector representation of the ligand conformation and its position at the binding pocket of 

the protein [3]. This vector is the position vector of each bird in PSO. 

Figure 9 shows the primary class diagram of PSO. The conformation of a ligand can 

be represented by the selected torsional states, its position and orientation with respect 

to the protein structure.  Therefore, each bird should encode the ligand conformation 

with a vector of 7+Ntors variables as shown in Figure 10: the ligand’s centre position 

consisting of the x, y, z coordinates; its orientation encoded using a quaternion (q0, q1, 
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q2, q3) where (q0, q1, q2) defines a vector originated at the centre of the ligand and q3 

is the self-rotation of the ligand along this vector; and a torsion angle θi for each 

rotatable bond in the ligand. Each degree of freedom represents a dimension in the 

search space where the birds will explore over it. In a standard PSO, all the birds will 

firstly be initialized its position vector xi(t=0) as well as the velocity vector vi(t=0) 

within the search space randomly. Then they start to move according to the position 

update (Equation 1) and velocity update equations (Equation 2). If a bird moves 

outside of the search space, it will be put back to the search space to a random 

position. The search step will iterate until the stopping criteria is met. Figure 11 shows 

the PSO flowchart for protein-ligand docking.  
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Figure 11 Flowchart of the designed PSO 



Improving Protein-Ligand Docking by Particle Swarm Optimization 

25 of 104  08 October 2014 

3.3.1  Stopping Criterion 

A stopping criterion I think is worth to discuss about. Let say those birds can fly 

infinitely. By the time, all the birds may converge to the same point which is the best 

well-known solution for them. However, if a stopping criterion is not well designed, 

those birds may keep flying near the best point, but may improve a very little or even 

haven’t improved the solution but keep spending time on it. And my project goal is to 

speed up the docking process, it is necessary to avoid the useless calculation. To 

design a stopping criterion before testing is difficult, I have to observe the regular 

converge steps then design within how many steps if there is a very little bit change or 

even no change to decide when is the proper time to terminate the loop. The more 

detail of stopping criteria will be discussed in CHAPTER 6. 



Improving Protein-Ligand Docking by Particle Swarm Optimization 

26 of 104  08 October 2014 

CHAPTER 4. Implementation 

4.1 Pipeline Automation 

In CHAPTER 3, an automated procedure has been defined (Figure 7) as well as the 

pseudo code. To achieve the routine that I defined, Shell Script is an easy approach 

for implement such kind of simple routine. AutoDock Tools provides a set of python 

program, those python programs have been already implement receptor and ligand 

operation such as add the charges, remove water and assign AutoDock atom type etc. 

In the shell script just simple to call the python program then the data preparation part 

can be processed by the python programs. A PDB file actually is a text file, all the 

atoms properties are written in plain text. An easy way for calculating the binding 

pocket size and position, to use AWK program, a language for processing text files.  

4.1.1  Selection 

From Figure 8, a complex selection is simply to pick up the protein-ligand by their 

name. The most common naming rule is 

${PDB_CODE}_${molecule_type}.${file_type}. I can summarize the filename in a 

text file, the Shell Script can simply fetch the file to access the molecule structure.  

infile=index_of_the_comlexes 
for nameList in `grep -v "\#" $infile | cut -f1 -d\ ` ; do 
… 
… 
done 

Figure 12: Partial shell script code of fetching each molecule complex 

Figure 12 shows the main loop of fetching the molecule complex from the PDB code 

list.  

4.1.2  Structure Files Preparation 

As the pipeline outline, the preparation consists the following operations: 

(1) If no partial charge or if each of the charges is zero, Gasteiger charges should be 

added 

(2) Add hydrogen atoms  

(3) Merge non-polar hydrogen  

(4) Assign AutoDock atom type to each atom / Remove waters 

(5) Calculate the torsion degree of freedom 

There are two python programs provided by AutoDock Tools, they are 

prepare_receptor4.py and prepare_ligand4.py. These two programs provide a list of 

arguments which can perform my designed operations, the lists are shown in Figure 

13 and Figure 14. 
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Figure 13 Arguments of prepare_ligand4.py 
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Figure 14 Arguments of prepare_receptor4.py 

To perform my targeted operations, argument –A and –U, respectively to add 

hydrogens and merge charges, remove non-polar hydrogens, lone pairs and water. The 

programs will add the gasteiger charges, calculate the torsion degree of freedom and 

assign the AutoDock atom type automatically. The detail code is shown in Figure 14 

prepare_receptor4.py -r {$nameList}_protein.pdb -A 'hydrogens' -o {$nameList}_protein.pdbqt -U 'nphs_lps_waters' 

prepare_ligand4.py -l {$nameList}_ligand.mol2 -o {$nameList}_ligand.pdbqt -A 'hydrogens' -U 'nphs_lps_waters' 

Figure 15 Calling python program in Shell script 

4.1.3  Search Space Calculation 

The calculation of search space depends on the pocket structure information. The 

pocket file format is PDB, the atom records is stored in plain text line by line. The 

atom records format is shown as Figure 16. 
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Figure 16: Data fields in PDB file [11]. 

 

Figure 17 An example PDB file. Showing here is the ligand structure of 1ps3. 
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As the x,y,z coordinates, positions and offsets have been given. Figure 17, is a ligand 

data file store in PDB format. By Equation 5 and Equation 6, it is easy to calculate the 

search space which is defined by the binding pocket. The detail implementation code 

please refers to CHAPTER 10.2 Automated Pipe-line Scripts 

4.2 Particle Swarm Optimization 

After defined the class and some operations, a real implementation can be carried out. 

Figure 18 shows the pseudo code of Monte Carlo procedure of AutoDock Vina. 

Loop until max_step 
 
 Mutate(Ligand.vector) 
 Local_Search(Ligand.vector) 
 If(Metropoils_accept(Ligand.vector)) 
   Local_Search(Ligand.vector) 
   If( score(Ligand.vector) < score(Best) ) 
    Best = Ligand.vector 
   End If 
 End If 
  
EndIf 
End Loop  

Figure 18 Pseudo code of Monte Carlo in Vina 

To find a place for placing the PSO, I have reviewed deeper for the mutate function 

and local optimization function. The mutate function just give a random number for 

translation, orientation and rotation. The principle is to mutate the structure randomly 

then go for the local search after certain amount of iterations, a refined structure can 

be found. The most functional part is the local search therefore I decide to change the 

random mutation into mutate the structure by PSO. The purpose is speed-up the time, 

I think an intelligent algorithm rather than given a random mutation can rapidly get 

close to the best solution.  

Therefore, the mutate function is revised by applying PSO. The PSO structures design 

has been done in the previous chapter. Table 2 shows the member functions of PSO 

and its description and parameters. The source code of these functions can be found in 

CHAPTER 10.3 Source Code of PSOxVina 

void init(rng&,conf&) Initialize PSO(randomize the vector, 

velocity, create number of birds) 

void updateVelocity(rng&, int) Calculate the new velocity of N-degree of 

freedom and assign to the birds.  

void updateVelocityO(rng&, int) 

void updateVelocityT(rng&, int, sz) 

void computeNewPosition(int) Compute the new pose of N-degree of 

freedom and assign to the birds. 

void computeNewOrientation(int) 
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void computeNewTorsion(rng&, int, sz) 

void updatePersonalBest(int,double) Update the personal best fitness value 

void updateGlobalBest(int) Update the global best fitness value 

void updateBestPosition(int,vec); Set the personal best vectors to pbest 

variable. 

void updateBestOrientation(int,qt) 

void updateBestTorsion(int,fl,sz) 

vec getCurrentPosition(int) Return the current pose information 

qt getCurrentOrientation(int) 

fl getCurrentTorsion(int,sz) 

void print(); Print all the birds information 

Table 2 Member functions of the PSO class. 
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CHAPTER 5. Testing 

5.1 Pipeline Automation 

After implementing the pipeline, this chapter is to tell how to ensure the 

implementation is correct and achieved what I expected from the previous chapter. 

Figure 7 shows the processes of pre-docking. In evaluation chapter, I will put some 

figures to ensure the automate process can be carried out. I expect there are 3 new 

files. A configuration file and two PDBQT files will be created after the automated 

process. 

5.2 Particle Swarm Optimization  

After implement the particle swarm optimization and the goal of this project is very 

clear. I defined several milestones or test stages for ensure PSO works fine and I am 

in the progress to my goal that I stated at the beginning, i.e. speed up without losing 

accuracy. 

The following tasks will be carried out in the evaluation part. 

1. Objective 
Apply PSO to AutoDock Vina and works effectively and maintain accuracy not 

worse than Vina 

 

Prerequisite 

Vina can be successfully compiled and run 

 

Input 

Prepared ligand and receptor file 

 

Expected Output 

Approximately accurate conformation to Vina docked conformation 

 

Description 

This test will mainly focus on whether PSO works correctly, will print out the 

information of the birds to see are those birds really ‘flying’ over the search 

space. Then will docking the core set using the automated script to see can the 

accuracy be maintained not worse than Vina. Vina docking will also be 

performed for comparison. 

 

Exception 

If the birds not ‘flying’ over the search space or the velocity doesn’t update, the 

debug action is required. 

If the applied PSO no matter the RMSD worse or better, the next task will be 

carried out. 
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2. Objective 

Tuning parameters, including w, c1, c2 and number of birds against the docking 

time and accuracy. 

 

Prerequisite 

The first task has to be completed. 

 

Input 

Approximately accurate conformation 

 

Expected Output 

A set of parameters that has accurate conformation and rapidly dock 

 

Description 

This test aims to find the best combination of parameter w inertia weight, c1 

coefficient of personal best, c2 coefficient of global best. Will try different 

combinations to find the best parameters which are rapidly and accurate. The 

start point will base on the previous test means the first test will use the same 

parameters as previous. 

 

Exception 

Keep changing the parameters until find the best combination against the 

accuracy and docking time. 

 

3. Objective 

Aim to find the most suitable stopping criterion and parameters by analysis the 

test cases.  

 

Prerequisite 

Some test cases have been performed 

 

Input 

Detail test data log from previous tests. 

 

Expected Output 

Stopping criterion is found 

 

Description 

This test will mainly analysis the previous test case data logs, to find when will 

the birds converge together in other words the best solution has been found. Then 

design a stopping criterion and find the converge timing point as the stopping 

parameter. 

 

Exception 

Applied the stopping criterion but didn’t speed up. Then will keep changing the 

stopping parameter(s) systematically. 
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CHAPTER 6. Evaluation 

6.1 Pipeline Automation 

 

Figure 19 Complex 1ps3 files listing 

Figure 19 shows the 1ps3 directory structure. Highlight with red color is the output 

file after docking process. Highlight with green color are the files that the automated 

script generated. Config.txt includes the search space size and coordinates (see Figure 

20). In addition, the file format which is generated from PSOxVina is PDBQT, to 

calculate the accuracy, a conversion is needed. 1ps3_ligand_vinadocked.pdb is the 

converted file from the docking result file. Further will compare with 1ps3_ligand.pdb 

which is the ligand structure before docking.  

 

Figure 20 1ps3 config.txt content 

6.2 Particle Swarm Optimization 

By achieve the tasks that I talked in the previous chapter. Different task may also spill 

down into different sub-tests. All the test cases will be tested on the same machine 

with 8 threads and 8 cores using PDBbind 2012 core set. And the number of birds 

represents how many birds in a single thread. Hence, totally number of birds should 

multiply number of threads. Table 3 and Table 4 show the averaged docking result 

from five separate docking runs using AutoDock Vina. Since Vina somehow will 

throw randomize number for calculation, to ensure the data is reliable an average 

result is taken. Later all the results compare with Vina refers to these two results. The 
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main metrics to assess the docking performance are RMSD and correlation they are 

calculated respectively by Equation 9 and Equation 10. 

RMSD = √
 

 
∑   

  
    

Equation 7  

 

where N is the number of pair of same position atoms in two molecules.   is the 

distance between the pair of atoms. 

Correlation(X,Y)= 
               

    
 Equation 8  

 

where X and Y are the docked binding affinity and expected binding affinity. σ is the 

standard deviations. 

Test case # Vina-A01 

Number of samples 10 

AVG_Duration 7 mins 4s 

AVG_RMSD (nm) 0.2024534 

AVG_Correlation 0.475989 

Table 3 Test Case #Vina-A01 (Averaged from 5 independent docking runs) 

Test case # Vina-A02 

Number of samples 201 

AVG_Duration 139 mins 42s 

AVG_RMSD (nm) 0.3649292 

AVG_Correlation 0.5114483406 

Table 4 Test Case #Vina-A02 (Averaged from 5 independent docking runs) 

6.2.1  Task 1 

Objective: Apply PSO to AutoDock Vina and works effectively and maintain 

accuracy not worse than Vina. 
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By the preliminary tests, PSOxVina ran without any stopping criterion. For 201 

complexes, it will take almost a day. In this task, just for ensuring the PSO running 

correctly, I decide to test only 10 complexes. Figure 21 shows those 10 complexes 

name with its torsion size. 

 

Figure 21: Torsion size distribution of 10 randomly selected complexes 

Test case # F101 

Number of samples 10 

C1 2.5 

C2 2.5 

W 1 

# of birds 10 

Duration 87 mins 32s 

RMSD (nm) 0.139304 

Correlation 0.48617390 

Table 5 Test Case #F101 
(Vina-A01: Duration:7 mins 4s , RMSD (nm): 0.2024534, Correlation: 0.475989) 

Table 5 shows the docking result of PSOxVina with 10 complexes. Compare with 

VINA, my initial point has improved the accuracy compared with Vina. However, 

this stage hasn’t speeded up the docking process yet.  
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Figure 22 1ps3 Docking process snapshots (a)1
st
 iteration (b)100

th
 iteration (c)1000

th
 iteration 

(d)8000
th

 iteration (e) Overlap with original Vina result (highlight with red) 

Figure 22 shows 1ps3 protein-ligand complex docking process snapshots that 

captured in different iterations, from beginning, middle and ending. Figure 22(e) 

overlap with original Vina docked conformation, obviously the result almost same as 

Vina. 
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Figure 23 2g9q Docking process snapshots (a)1
st
 iteration (b)100

th
 iteration (c)1000

th
 iteration 

(d)8000
th

 iteration (e) Overlap with original Vina result(highlight with red) 

Figure 23 shows 2g9q protein-ligand complex docking process snapshots that 

captured in different iterations, from beginning, middle and ending. Figure 22 (e) 

overlap with original Vina docked conformation, obviously from Figure 22 and 

Figure 23 the PSO is applied successfully and run correctly. In the next task, I will 

focus on looking for the opportunities for improving much better both in boost up and 

accuracy. 

6.2.2  Task 2 

Objective: Tuning parameter, including w, c1, c2 and number of birds against the 

docking time and accuracy 

Test case # F201 F202 F203 F204 F205 

Number of 

samples 

10 10 10 10 10 

C1 2.5 2.5 2.5 2.5 2.5 

C2 2.5 2.5 2.5 2.5 2.5 

W 1 1 1 1 1 

# of birds 9 8 12 11 7 

Duration 79mins 57s 72mins 12s 102mins 5s 94mins 18s 65mins 1s 

RMSD (nm) 0.135824 0.118366 0.174542 0.162415 0.135545 

Correlation 0.52033309 0.47869168 0.47800366 0.47908974 0.47566165 

Table 6 Test Case #F201~#F205 
(Vina-A01: Duration:7 mins 4s , RMSD (nm): 0.2024534, Correlation: 0.475989) 

(#F101: Birds: 10, Duration: 87mins 32s, RMSD (nm): 0.139304, Correlation: 0.4861739) 

Table 6 summarize 5 test cases based on different number of birds. From 7 birds to 12 

birds in each thread. The data gives evidence that by the number of birds decrease, the 

spending time will also reduce. On the other hand, test case F202 and F205 RMSD 

are better than Vina with lower time spending, F202 looks very promising and move a 

little bit closer to this project objective. F202 will be selected to test with different w, 

c1 and c2 parameters. For the reason not choosing F205, it is because F205 boost up 

9% of the system but lose 14% of accuracy. Eventually I pick F202 instead of F205 to 

balance the trade-off. 
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Refer to [3], the author find an alternative velocity equation and constraints(see 

Equation 9, Equation 10 and Equation 11), in that paper the result shows the birds will 

converge much more fast than before. In this parameters test, the equation will be 

implemented and #F202 parameters will be used to calculate the K. By the 

multiplication associative law, K actually is the weight of vi and the weight also 

applies to c1 and c2. Hence, w, c1 and c2 will be pre-calculated then assign to the 

program. 

vi(t+1) = K*[vi(t) + c1*rand() * ( pbesti(t) – xi(t) ) 

+ c2 * rand() * ( gbest(t) – xi(t) )] 

Equation 9  

 

  
 

| −  − √  −  |
 

Equation 10  

          Equation 11 

Test case # F202 F206 F207 F208 F209 

Number of 

samples 

10 10 10 10 10 

C1 2.5 0.66 0.33 0.99 0.26 

C2 2.5 0.66 0.33 0.99 0.26 

W 1 0.26 0.13 0.36 0.66 

# of birds 8 8 8 8 8 

Duration 72mins 12s 60mins 57min 36s 56mins 19s 53mins 

RMSD (nm) 0.118366 0.15756 0.107608 0.122352 0.110873 

Correlation 0.47869168 0.44025626 0.50249733 0.4689542 0.47296169 

Table 7 Test Case #F202, #F206~#F209 
(Vina-A01: Duration:7 mins 4s , RMSD (nm): 0.2024534, Correlation: 0.475989) 

Table 7 shows different combination of parameters docking result. The lowest RMSD 

is test case #F207 RMSD has improved 9% compared with #F202. #F209 just 

improved 6.3%. #F206 and #F208 has decreased 33.1% and 3.37% respectively.  

These test cases also generate converge at which iteration (see Table 8). This is 

important to have such kind of data, the data gives an idea for discussing the stopping 

criterion in next task and further optimization. I defined if the best conformation 

keeps no change or the fitness value keeps changing < 0.0001 with 350 steps then 
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may consider all the particles are converge to the best solution. The number of steps 

was observed by preliminary test, most of the fitness value only changes very little or 

even no change after several steps then the ‘several steps’ would be that number. 

 F202 F206 F207 F208 F209 

1ps3 7851 491 672 617 781 

3d4z 17896 652 666 507 685 

3ejr 14088 682 12381 801 881 

2qmj 3252 2769 36303 9679 8595 

3l4w 4674 715 1066 1009 830 

3l4u 28756 1350 8953 4015 1629 

3l7d 14508 524 655 653 753 

3l7a 2056 1118 617 680 831 

2g9q 16372 525 745 645 677 

2w66 10076 526 695 1597 1107 

Average 11952.9 935.2 6275.3 2020.3 1676.9 

 Table 8 Test Case #F202, #F206~#F209 with converge iteration number 

Compare to the best one which I chose from the first task. #F206, #F208 and #F209 

converge 92.17%, 85% and 85.97% faster compare with #F202.  
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Figure 24 Cases from Table 7 compare converge step and torsion size (Complex name has been 

arranged in small-large order) 

Figure 24 gives an intuitive illustration, F206, F208 and F209 converge almost at the 

same step in most of the complexes. Only start from 17 torsion size, the converge step 

begins to grow up. 10 test samples may not powerful enough to state the trend, I will 

pick F206, F208 and F209 to dock with 201 complexes which are the whole core set 

of PDBbind.  

Test case # F206 F208 F209 

Number of 

samples 

201 201 201 

C1 0.66 0.99 0.26 

C2 0.66 0.99 0.26 

W 0.26 0.36 0.66 

# of birds 8 8 8 

Duration 1223mins 

54s 

1249mins 

17s 

1221mins 

RMSD (nm) 0.307343 0.297607 0.30006 

Correlation 0.51504922 0.52736977 0.52450163 
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Table 9 Test Case #F206-1, #F208-1 and #F209-1 
(Vina-A02: Duration:139 mins 42s , RMSD (nm): 0.3649292, Correlation: 0.5114483406) 

 

Figure 25 Convergence trend of test case in Table 9 (Last convergence appear) 

Figure 25 shows the convergence trend of Table 9. The convergence steps were 

captured in the latest convergence step, and further take the average by the same 

number of torsion. From Figure 25, those trends look close to each other, except after 

20 torsions and the convergence step increases by the number of torsion grows. The 

specific numbers of overall average convergence steps of different test cases is shown 

in Table 10, the best is #F209-1. However Figure 26 is the convergence trend of Table 

9 but captured in the first convergence appeared. Figure 26 states the different result 

compare with Figure 25, the differences show me, even the first convergence appear, 

PSO still can find a better result. This time #F208-1 is the best which converge 

rapidly. To further apply the stopping criterion, case #F208-1 and #F209-1 will be 

selected. 

 

Figure 26 Convergence trend of test case in Table 9 (First convergence appear) 
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 F206-1 F208-1 F209-1 

Last convergence  5600 5934 5249 

First convergence 1363 1010 1303 

Table 10 Specific number of overall average converge step 

6.2.3  Task 3 

Objective: Aim to find the most suitable stopping criterion and parameters by 

analysis the test cases. 

To boost up the docking process, quickly convergence is required. #F208-1 and 

#F209-1 give the outstanding convergence step when convergence first appears. 

Hence, the goal of criterion try to stop at the first convergence appears. From the 

previous section, a condition of finding the first convergence and last convergence has 

been declared: if the best conformation keeps no change or the fitness value keeps 

changing < 0.0001 with 350 steps then may consider all the particles are converge to 

the best solution.  

Test case # F301 F302 

Number of 

samples 

201 201 

C1 0.26 0.99 

C2 0.26 0.99 

W 0.66 0.36 

# of birds 8 8 

Duration 96mins 36s 85mins 56s 

RMSD (nm) 0.3301812 0.3360118 

Correlation 0.509694248 0.506732804 

Table 11 Test Case #F301 and #F302 (Averaged from 5 independent docking runs) 
(Vina-A02: Duration:139 mins 42s , RMSD (nm): 0.3649292, Correlation: 0.5114483406) 
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CHAPTER 7. Discussion 

After series different parameter combinations of test cases in the previous Chapter, I 

settle down the candidate parameters on #F302. To consider the possible 

improvement, I try to look at how did the best test case perform in accuracy.  

 

Figure 27 #F302 RMSD trend 

Figure 27 shows the trend of the RMSD against different torsion size of ligand. Seems 

RMSD increasing by the torsion size grow, even there is a big drop in 18, I think it is 

caused by rarely samples. If the RMSD increasing can’t avoided, or need to be traded 

by time, then I choose saving the time without keeping accurate. It is because in 

CADD, they need rapidly program with a roughly solution. The possible to reduce the 

time is decrease number of birds when they docked with large torsion size of ligand. 

So I base on 8 birds, to calculate number of birds for different torsion size of ligand 

by 

   ⌊  −
  
  

 ⌋ 
Equation 12 

where i is the ligand, N is the number of birds, t represent torsion size of ligand. 
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Test case # F401 Vina-A02 

Number of 

samples 

201 201 

C1 0.99 -- 

C2 0.99 -- 

W 0.36 -- 

# of birds See Equation 12 -- 

Duration 75mins 56s 139mins 42s 

RMSD (nm) 0.3391788 0.3649292 

Correlation 0.504714078 0.5114483406 

Table 12 Test Case #F401 and #Vina-A02 (Averaged from 5 independent docking runs) 

Table 12 shows the docking result after implemented the Equation 12. The docking 

time performs as same as expected, decrease 11.7%. But RMSD makes me surprise 

that only increase 0.9%. It is worth to trade the accuracy for boost up the docking 

process. Compare with Autodock Vina, RMSD improves 7% and boost up 46% of the 

docking process. Figure 28 shows the ratio of the best independent docking run for 

which which RMSD < 0.2nm. #F401 achieves 55.72% a little bit win Vina 53.73% 

Finally, I settle down #F401 would be this project result and name as PSOxVina. The 

detail docking result please refer to CHAPTER 10.1 Independent Docking Result 

 

Figure 28 Ratio of RMSD < 0.2nm by PSOxVina and Vina 
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CHAPTER 8. Conclusion 

PSOxVina, the first apply PSO to Vina docking program, has based on the advantage 

of Vina to further improve accuracy and to be able to search quickly and intelligently 

over the huge conformational space. An automated pipe-line also performs well while 

I also using the script for running those test cases. This project may consider success 

according to the goal I set in the beginning. It gives me an unexpected result. The 

accuracy also improves while I try to boost up the system.  

8.1 Future Work 

It is still far away to being perfect, even the docking time has been boosted up. As 

mentioned the most time consuming process is the local search. After discussed with 

my supervisor Dr. Shirely, we thought there would be several approaches that may 

also able to boost up the time. (1) Using GPU to computing the local search, it is not a 

diffcult solution but looks promising to boost up the process, CUDA (Compute 

Unified Device Architecture) [12] was introduced by NVIDIA Corporation. CUDA 

provides a set of library to developer for GPU programming. There is an exisiting 

research paper has successfully implemented BFGS to GPU computing [13]. By my 

review, the implemenatin boost up ~95% with very little (e
-11

) energy changed. (2) 

Optimize the PSO parameters, from thoses test cases and analysis, different 

combination of parameters can affect the accuracy and converge time. (3) Find 

stopping criterion that situable for all size of ligand is essential. It is because by my 

research, different criteria make the docking time change as well as the accuracy. 
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CHAPTER 10. Appendix 

10.1 Independent Docking Result 

10.1.1 AutoDock Vina 

 Vina-A02-1 Vina-A02-2 Vina-A02-3 Vina-A02-4 Vina-A02-5 

1ps3 0.047739 0.047263 0.046494 0.048249 0.048578 

3d4z 0.101343 0.101978 0.101158 0.100205 0.094814 

3ejr 0.102806 0.260712 0.06456 0.106114 0.268602 

2qmj 0.21083 0.210669 0.211202 0.210703 0.211117 

3l4w 0.191515 0.07375 1.40502 0.191335 1.39316 

3l4u 0.186663 0.827089 0.144804 0.810046 1.57177 

3l7d 0.136647 0.136719 0.137281 0.135955 0.135964 

3l7a 0.068067 0.170225 0.066674 0.067778 0.066922 

2g9q 0.052689 0.047937 0.0489 0.048988 0.048469 

2w66 0.036203 0.501951 0.038389 0.035619 0.03733 

2wca 0.370158 0.379586 0.362392 0.381201 0.381493 

2vvn 0.029483 0.024911 0.026458 0.025625 0.028815 

3sjf 0.088051 0.088285 0.08519 0.063205 0.0662 

2xej 0.532767 0.498572 0.531305 0.551181 0.460903 

2xeg 0.953167 0.936717 0.935583 0.363843 0.926322 

2x96 1.20595 1.20312 1.20399 1.15713 1.20186 

2x91 0.725322 0.720346 0.71176 0.774202 0.711498 
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1j37 0.129996 0.068714 0.128739 0.130676 0.1278 

3cj2 0.041453 0.042748 0.04097 0.042718 0.040505 

2d3u 0.037389 0.038125 0.036165 0.03646 0.040537 

3gnw 0.030987 0.030692 0.030264 0.03193 0.030027 

1gpk 0.023774 0.026129 0.024046 0.02928 0.024679 

1h23 0.977842 0.145594 0.983175 0.645826 0.993722 

1e66 0.032031 0.034539 0.031695 0.034706 0.033378 

3f3a 0.190117 0.181476 0.191141 0.193294 0.180068 

3f3c 0.096078 0.09607 0.093145 0.09615 0.093922 

3f3e 0.169075 0.17061 0.169987 0.169011 0.168722 

2rkm 0.095622 0.098346 0.078618 0.106551 0.101013 

1b9j 0.127172 0.129028 0.123468 0.128072 0.127248 

1b7h 0.096124 0.098406 0.110506 0.111873 0.101549 

2j77 0.037541 0.038247 0.033808 0.034013 0.036725 

2j78 0.034759 0.037265 0.034898 0.039585 0.039249 

2cet 0.822751 0.248763 0.823557 0.821609 0.822353 

2zxd 0.045869 0.040794 0.042615 0.043084 0.040225 

2zwz 0.048857 0.047835 0.053047 0.054298 0.050727 

2zx6 0.838459 0.067886 0.063012 0.078449 0.068454 

3bra 0.936674 0.936536 1.33688 0.942056 0.942966 

3ckp 0.913649 0.056518 0.065942 0.913288 0.065492 
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2g94 0.416093 0.267485 0.271433 0.51387 0.971864 

3fk1 0.752731 0.726078 0.737042 0.725211 0.733963 

2qft 0.068808 0.063518 0.744326 0.744497 0.741676 

2pq9 0.131895 0.139074 0.120524 0.132264 0.139382 

2qwb 0.480071 0.091293 0.091179 0.480096 0.090453 

2qwd 0.095113 0.096887 0.103191 0.10879 0.075115 

2qwe 0.036683 0.047232 0.059568 0.077279 0.384443 

1n2v 0.262926 0.26556 0.263677 0.263516 0.262885 

1r5y 0.019986 0.029166 0.032912 0.032478 0.025223 

3ge7 0.088823 0.088597 0.090123 0.089402 0.088458 

3hec 0.051446 0.051047 0.051585 1.01266 0.049634 

2zb0 0.133623 0.134083 0.134358 0.134783 0.134371 

3e93 0.039948 0.040055 1.37526 0.038126 1.47603 

3gv9 1.25646 1.26011 1.2563 1.25646 1.25651 

2pu2 0.742819 0.744469 0.744041 0.743338 0.745247 

1xgj 0.378737 0.380717 0.380306 0.379274 0.380184 

1q8t 0.780874 0.781627 0.779479 0.781136 0.781815 

1xh6 0.753347 0.087618 0.087761 0.087725 0.087634 

1re8 0.122729 0.034266 0.034324 0.033655 0.034094 

3h30 0.527923 0.527542 0.538882 0.529522 0.528294 

2zjw 0.223962 0.223754 0.22251 0.2221 0.223708 
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3pe2 0.0509 0.059731 0.05606 0.052467 0.098183 

2v00 0.13419 0.134622 0.134974 0.139582 0.138592 

5er2 0.949567 0.933933 0.445567 0.950558 0.447446 

4er2 1.00509 0.373412 0.449619 1.32592 0.408022 

2wec 1.13286 1.05185 1.08807 1.11949 1.11809 

1bxq 0.268433 0.253829 0.249816 0.605634 0.264012 

1bxo 0.049174 0.04876 0.048442 0.048685 0.049961 

2brb 0.108001 0.109483 0.107967 0.113907 0.107416 

3jvs 0.302724 0.301869 0.302667 0.302619 0.302414 

1nvq 0.521963 0.521952 0.521898 0.521886 0.522011 

3mfv 0.166245 0.176872 0.173138 0.174459 0.184302 

3f80 0.167155 0.166398 0.148342 0.150943 0.129152 

3kv2 0.093498 0.119337 0.098036 0.099185 0.119528 

1nwl 0.799223 0.666329 0.880881 0.80781 0.853709 

1c88 1.11284 1.10988 1.10898 0.093371 1.11599 

2qbp 0.111002 0.111468 0.111616 0.111401 0.111402 

3fcq 0.922889 0.922864 0.922052 0.921856 0.921494 

1os0 0.546355 0.542096 0.547459 0.548353 0.539921 

4tmn 1.34102 1.29561 1.28877 0.752698 1.34788 

2fzc 0.517572 0.525537 0.526348 0.522471 0.521264 

2h3e 0.089079 0.088709 0.088668 0.089196 0.088735 
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1d09 0.090734 0.142769 0.142782 0.142866 0.142921 

3kgq 0.251936 0.474105 0.473858 0.460561 0.163808 

2rfh 0.168856 0.121615 0.166719 0.120837 0.166966 

6cpa 0.832428 0.702904 0.753871 0.839726 0.867797 

2exm 0.57304 0.566671 0.566332 0.603757 0.569828 

1b39 0.280005 0.316735 0.317289 0.330309 0.317414 

2xmy 0.869248 0.878904 0.859117 0.879351 0.852802 

1qi0 1.09527 1.09572 1.09608 1.09492 1.09341 

1w3k 0.029661 0.033057 0.034841 0.034338 0.03481 

1w3l 0.080393 0.080321 0.081111 0.080699 0.080468 

1bcu 0.069054 0.069194 0.069815 0.069664 0.06995 

1c1v 0.847243 0.847214 0.845449 0.840027 0.846906 

1sl3 0.068116 0.067341 0.073391 0.07023 0.068917 

3imc 0.463436 0.463425 0.463557 0.463247 0.46336 

3iub 0.436246 0.438554 0.440522 0.4437 0.442589 

3cow 0.060788 0.061391 0.061257 0.060855 0.060329 

3b3s 0.159124 0.158803 0.161006 0.160281 0.159065 

1ft7 0.201888 0.201932 0.22856 0.242224 0.22963 

1txr 0.275738 0.648428 0.650714 0.262938 0.18655 

3acw 0.170975 0.170786 0.134114 0.170069 0.171116 

2zcr 0.341643 0.180517 0.338942 0.334663 0.333557 
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2zcq 0.609631 0.558772 0.556053 0.613299 0.558075 

1y1z 0.119672 0.117941 0.116478 0.119666 0.119345 

1pb8 1.17317 0.826363 1.17349 1.17282 0.214356 

1pbq 0.082023 0.08189 0.082585 0.083077 0.082618 

1lvu 0.108754 0.104843 0.102878 0.065048 0.066058 

1v48 0.098983 0.099819 0.096653 0.115374 0.137611 

1b8o 0.02743 0.027425 0.027738 0.025677 0.028783 

3adv 1.65649 1.65568 1.65589 1.65233 1.65542 

2i4j 1.14889 0.957846 0.810165 0.954538 1.14407 

2p4y 0.081809 0.997364 0.09264 0.772382 0.775219 

3mhw 0.481183 0.482478 0.48133 0.481237 0.481026 

1o5b 0.097944 0.098238 0.097991 0.098583 0.098294 

1sqa 0.148146 0.254498 0.590242 0.224559 0.173399 

3kme 0.30758 0.309119 0.30838 0.047043 0.274432 

3b92 0.119109 0.358969 0.501596 0.199599 0.151521 

3e8r 0.29304 0.293918 0.292831 0.291264 0.292929 

2osf 0.433984 0.433946 0.433965 0.43427 0.434143 

2pow 0.534696 0.534773 0.534794 0.534623 0.534558 

1if7 0.424288 0.406501 0.250485 0.348417 0.415757 

2xdl 0.031103 0.032525 0.033598 0.027573 0.036581 

1yc1 0.080327 0.080438 0.08111 0.080592 0.080431 
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2yki 0.023621 0.024294 0.023338 1.014 0.024933 

1p1q 0.525836 0.525969 0.526355 0.525265 0.526139 

3bfu 0.27945 0.496705 1.64118 1.51727 1.64276 

1ftm 0.23561 0.041913 0.483793 0.48399 0.042161 

2yhd 2.02811 2.02863 2.02777 1.96064 2.02782 

1z95 0.102156 0.102915 0.101406 0.10248 0.102302 

3g0w 0.022374 0.022275 0.021931 0.020261 0.021083 

1vso 0.175342 0.184804 0.187193 0.174742 0.202753 

3gbb 0.08616 1.30979 0.079134 0.080061 0.084043 

3fv1 0.075308 1.38743 0.074908 0.487159 1.41525 

2b1v 0.087348 0.087163 0.086013 0.087763 0.086327 

2qe4 0.062028 0.061913 0.061856 0.060543 0.375756 

2p15 1.56935 0.748682 0.748762 0.032331 0.034143 

2y5h 0.212967 0.196932 0.225056 0.220145 0.205158 

2xbv 0.05356 0.056742 0.074115 0.075248 0.074616 

1mq6 0.17459 0.17586 0.126963 0.126095 0.175497 

1loq 0.105755 0.108785 0.106305 0.105403 0.106389 

1lol 0.371749 0.373696 0.375047 0.374594 0.374045 

1x1z 0.102104 0.101644 0.10259 0.102343 0.102478 

4tim 0.162467 0.18049 0.162978 0.133839 0.183266 

2v2h 0.169576 0.187712 0.168901 0.169574 0.14564 



Improving Protein-Ligand Docking by Particle Swarm Optimization 

56 of 104  08 October 2014 

1trd 0.136558 0.428442 0.139208 0.140159 0.140914 

1uto 1.43126 1.43143 1.43669 1.43223 1.43139 

3gy4 0.1342 0.133442 0.134541 0.134971 0.135059 

1o3f 0.16945 0.168701 0.169171 0.168117 0.161697 

1jys 0.168794 0.287071 0.287139 0.287073 0.168133 

1nc1 0.119364 0.119577 0.119568 0.118497 1.27048 

1y6q 1.65583 1.67828 1.67508 0.043444 0.04907 

3pce 0.50463 0.505056 0.505142 0.505161 0.504387 

3pcn 0.503583 0.502568 0.503279 0.502432 0.503768 

3pcj 0.146657 0.144444 0.145765 0.110562 0.146956 

2pgz 0.033161 0.037193 0.035862 0.450747 0.033466 

2wn9 0.732232 0.732674 0.73296 0.732064 0.726006 

2x00 0.051595 0.050929 0.050893 0.05025 0.050521 

2r23 0.448358 0.45197 0.465311 0.468335 0.39768 

2bmk 0.139314 0.142251 0.09927 0.138743 0.135709 

1kel 0.169502 0.148051 0.141789 0.169623 0.114857 

3ozt 0.109441 0.109721 0.043465 0.11061 0.109879 

3oe5 0.09027 0.098289 0.112084 0.076478 0.105245 

3nw9 0.030925 0.124462 0.055137 0.040095 0.056204 

1zea 0.923698 0.881058 1.06029 1.00157 1.02961 

2cgr 0.030279 0.037418 0.031144 0.030195 0.028516 
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1igj 0.199094 0.194891 0.193262 0.191552 0.191904 

1lbk 0.908757 0.918781 1.07275 0.720543 0.718666 

2gss 0.327191 0.327768 0.328865 0.327345 0.328134 

3ie3 0.300421 0.334415 0.301179 0.309135 0.310024 

3n7a 0.031873 0.034612 0.033078 0.031612 0.861034 

3n86 1.64375 0.100136 0.100574 0.099346 0.099847 

2y71 0.024451 0.025084 0.026159 0.026559 0.024199 

3lka 0.575579 0.576782 0.559516 0.558597 0.561315 

3ehy 0.080146 0.081632 0.076564 0.427787 0.129975 

3f17 0.431776 0.432053 0.432395 0.432436 0.431623 

1adl 0.491264 0.582617 0.649178 0.336707 0.452103 

1g74 0.615201 0.611679 0.506384 0.183317 0.618315 

2nnq 0.084167 0.087724 0.085794 0.085392 0.085684 

1str 0.250327 0.274773 0.748419 0.289891 0.881389 

1swr 1.19403 0.096374 0.06704 0.065968 0.098062 

3rdo 0.099989 0.058683 0.093576 0.096794 0.097748 

3jvk 1.0156 1.01136 1.0192 1.02624 0.998907 

3u5j 0.020945 0.025081 0.025033 0.022189 0.020949 

3mxf 0.069725 0.069562 0.069597 0.069581 0.069336 

3cft 0.556377 0.556547 0.555857 0.556248 0.556303 

3nex 0.275501 0.290976 0.326781 0.322105 0.320351 
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2g5u 0.258174 0.257527 0.257901 0.258587 0.257525 

3dxg 0.610246 0.610364 0.611801 0.610934 0.610504 

1o0m 0.115687 0.098742 0.115214 0.116187 0.115383 

1u1b 0.711994 0.725575 0.697744 0.70802 0.722805 

1sv3 0.32391 0.323988 0.323569 0.271378 0.240015 

1jq8 0.994112 0.976192 0.988819 1.00171 1.05554 

2arm 0.476355 0.471315 0.470819 0.492353 0.471736 

3ov1 0.101946 0.111529 0.116116 0.079272 0.122221 

3s8o 0.541113 0.548866 0.54843 0.546306 0.550759 

1jyq 0.323712 0.334826 0.330652 0.964493 0.309705 

1a30 0.735536 0.740898 0.910641 0.735884 0.713182 

3cyx 0.085215 0.084645 0.084667 0.084574 0.084711 

2i4x 0.185141 0.244891 0.76911 0.426774 0.236634 

1d7j 0.185526 0.184575 0.184547 0.18599 0.184201 

1fki 0.023048 0.023056 0.023048 0.023052 0.023056 

Table 13 5 independent runs of Vina-A02 

10.1.2 PSOxVina 

 F401-1 F401-2 F401-3 F401-4 F401-5 

1ps3 0.047441 0.045039 0.04754 0.048706 0.045562 

3d4z 0.099087 0.100899 0.100547 0.054506 0.101795 

3ejr 0.045015 0.258736 0.283398 0.260119 0.259335 

2qmj 0.209237 0.211613 0.204862 0.212455 0.213891 
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3l4w 0.190621 0.191913 0.190724 0.190783 1.4098 

3l4u 0.166297 0.145635 0.204088 0.154987 0.161979 

3l7d 0.120907 0.161264 0.135596 0.120804 0.143621 

3l7a 0.066695 0.066954 0.067073 0.066812 0.065493 

2g9q 0.046794 0.052054 0.050615 0.048507 0.04956 

2w66 0.033731 0.037227 0.036366 0.032867 0.03958 

2wca 0.381014 0.380688 0.37124 0.351658 0.721269 

2vvn 0.026693 0.028745 0.026283 0.026313 0.027284 

3sjf 0.077984 0.054847 0.071432 0.087132 0.070839 

2xej 0.610423 0.529154 0.574133 0.546816 0.568119 

2xeg 0.613241 0.338183 0.657913 0.645991 0.593018 

2x96 1.07928 1.19575 0.830526 1.20239 1.19385 

2x91 0.738823 0.770069 0.785771 0.711435 1.09083 

1j37 0.608804 0.101307 0.531175 0.609221 0.612498 

3cj2 0.042944 0.65143 0.041417 0.651212 0.039793 

2d3u 0.038722 0.983247 0.10518 0.960003 0.092852 

3gnw 0.030665 0.029832 0.030598 0.02987 0.029294 

1gpk 0.022981 0.023861 0.026323 0.02533 0.028483 

1h23 0.313033 0.986385 1.17343 0.266651 0.105721 

1e66 0.032985 0.033258 0.031697 0.033562 0.033955 

3f3a 0.177909 0.116188 0.176524 0.179357 0.175795 
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3f3c 0.03223 0.093978 0.024616 0.024309 0.024036 

3f3e 0.16893 0.168991 0.133827 0.170528 0.13158 

2rkm 0.07519 0.089796 0.809338 0.226251 0.099246 

1b9j 0.121752 0.115359 0.108738 0.139203 0.1107 

1b7h 0.099308 0.104684 0.104723 0.096465 0.149758 

2j77 0.243477 0.033738 0.246334 0.244789 0.24439 

2j78 0.036827 0.039919 0.03747 0.038439 0.038348 

2cet 0.824883 0.819739 0.224724 0.23932 0.824811 

2zxd 0.041955 0.042307 0.041518 0.040884 0.042 

2zwz 0.052184 0.048639 0.049108 0.047647 0.051757 

2zx6 0.065914 0.062974 0.065072 1.60629 0.064884 

3bra 0.947344 1.33618 1.33642 1.33745 1.33883 

3ckp 0.206818 0.055295 0.106477 0.266403 0.921421 

2g94 0.133773 0.265642 0.797538 0.769859 0.780196 

3fk1 0.724917 0.726216 0.72744 0.728179 0.75801 

2qft 0.737596 0.509199 0.589687 0.590948 0.726533 

2pq9 0.089707 0.100901 0.119329 0.120046 0.025246 

2qwb 0.365332 0.48962 0.054642 0.056556 0.134576 

2qwd 0.364238 0.068566 0.098204 0.078269 0.066436 

2qwe 0.054802 0.072914 0.112058 0.112448 0.054023 

1n2v 0.264414 0.267126 0.376957 0.26491 0.376857 
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1r5y 0.030326 0.019906 0.020474 0.02782 0.025287 

3ge7 0.089071 0.087332 0.089222 0.089547 0.088931 

3hec 0.057732 0.053884 0.049561 0.053562 0.053942 

2zb0 0.076268 0.07648 0.075884 0.134289 0.07697 

3e93 0.038837 0.039261 0.038411 0.039009 0.039682 

3gv9 1.2556 1.25964 1.25664 1.25959 1.25668 

2pu2 0.743012 0.744775 0.745737 0.743798 0.742465 

1xgj 0.226644 1.14296 0.949759 0.555431 1.21325 

1q8t 0.77916 0.779223 0.779108 0.779146 0.779061 

1xh6 0.055323 0.055229 0.078689 0.078965 0.087598 

1re8 0.034768 0.085306 0.143885 0.033714 0.033331 

3h30 0.37874 0.378924 0.379097 0.200008 0.378268 

2zjw 0.223171 0.630083 0.630313 0.223351 0.630223 

3pe2 0.074211 0.792118 0.067892 0.046495 0.065651 

2v00 0.084434 0.083627 0.089943 0.083817 0.090212 

5er2 1.00015 0.979431 0.231489 0.885203 0.465175 

4er2 1.01318 0.37487 1.00578 0.912169 1.32061 

2wec 0.521785 0.452759 0.538354 1.1048 1.13757 

1bxq 0.261142 0.264797 0.598825 0.231147 0.267388 

1bxo 0.036238 0.04901 0.049564 0.072695 0.072291 

2brb 0.108607 0.106635 0.113051 0.107819 0.588269 
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3jvs 0.296732 0.303126 0.302887 0.302965 1.02849 

1nvq 0.522058 0.522107 0.522057 0.522098 0.521858 

3mfv 0.169414 0.193669 0.467112 0.222989 0.218159 

3f80 0.188896 0.136556 0.131132 0.106811 0.140612 

3kv2 0.131216 0.101844 0.100746 0.101158 0.101987 

1nwl 0.883376 0.920316 0.788259 0.763869 0.904928 

1c88 1.13746 1.11302 1.11538 0.051487 1.1106 

2qbp 0.099 0.099093 0.099161 0.11148 0.111515 

3fcq 0.163215 0.143249 0.921397 0.143071 0.163568 

1os0 0.57349 0.56404 0.55975 0.105735 0.861755 

4tmn 1.28661 0.904034 0.724144 0.744852 1.22565 

2fzc 0.53157 0.519222 0.528839 0.531051 0.522304 

2h3e 0.035562 0.088355 0.035597 0.089154 0.099406 

1d09 0.042001 0.118611 0.04243 0.143043 0.042479 

3kgq 0.473799 0.47391 0.468497 0.473819 0.46583 

2rfh 0.09546 0.165986 0.165259 0.1413 0.147762 

6cpa 0.632374 0.748763 0.755785 0.613919 0.982145 

2exm 0.565693 0.65439 0.565745 0.579951 0.653018 

1b39 0.328096 0.329313 0.329596 0.328299 0.330363 

2xmy 0.381387 0.458397 0.843 0.826293 0.917901 

1qi0 0.837684 1.12558 0.820738 0.799195 1.09633 



Improving Protein-Ligand Docking by Particle Swarm Optimization 

63 of 104  08 October 2014 

1w3k 0.840048 0.839942 0.834278 0.536272 0.068972 

1w3l 0.065855 1.02559 0.584027 0.047165 0.611788 

1bcu 0.589627 0.068866 0.069408 0.069141 0.068707 

1c1v 0.839472 0.845313 0.845732 0.845673 0.845198 

1sl3 0.468727 0.850027 0.067614 0.972469 0.067521 

3imc 0.464912 0.463339 0.46335 0.023835 0.021491 

3iub 0.4421 0.167794 0.441689 0.442832 0.167604 

3cow 0.345461 0.061464 0.349099 0.061255 0.351755 

3b3s 0.157687 0.156727 0.15742 0.160516 0.156824 

1ft7 0.242531 0.263017 0.242775 0.194626 0.185957 

1txr 0.155915 0.746511 0.249224 0.203081 0.223445 

3acw 0.133015 0.170225 0.132541 0.130613 0.132824 

2zcr 0.141189 0.109166 0.147712 0.130573 0.139406 

2zcq 0.579255 0.546264 0.539889 0.622749 0.549807 

1y1z 0.118053 0.012726 0.116767 0.028219 0.030363 

1pb8 0.125776 0.08087 0.080529 0.123636 0.083145 

1pbq 0.082211 0.081995 0.082442 0.035454 0.034959 

1lvu 0.119047 0.114929 0.120071 0.109849 0.126227 

1v48 0.103184 0.137883 0.152332 0.092479 0.084879 

1b8o 0.026502 0.02666 0.0276 0.02808 0.026637 

3adv 1.65458 1.65504 0.92776 1.58884 1.65486 
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2i4j 1.09516 0.8756 1.17449 0.515728 1.16103 

2p4y 0.078372 0.105235 0.067031 0.050766 0.052266 

3mhw 0.48477 0.166288 0.485181 0.483507 0.166674 

1o5b 0.097476 0.098402 0.098377 0.097478 0.098124 

1sqa 0.254273 0.252518 1.35953 0.14273 0.15975 

3kme 0.045408 0.045948 0.309634 0.28674 0.212587 

3b92 0.184264 0.152426 0.166191 0.198402 0.305336 

3e8r 0.302562 0.29137 0.291087 0.291182 0.291288 

2osf 0.433065 0.434079 0.433999 0.433958 0.433926 

2pow 0.534705 0.534717 0.534543 0.534717 0.534702 

1if7 0.446763 0.261404 0.39757 0.384792 0.250607 

2xdl 0.032801 0.09004 0.031768 0.033905 0.086793 

1yc1 0.076739 0.080611 0.080057 0.080234 0.080038 

2yki 0.024143 0.024143 0.024143 0.024143 0.024143 

1p1q 0.26146 0.517601 0.260903 0.521652 0.522322 

3bfu 0.043291 0.040243 0.039603 0.038415 0.039786 

1ftm 0.031747 0.488169 0.032733 0.482503 0.040794 

2yhd 2.02821 2.02836 2.02789 2.02793 2.0279 

1z95 0.062485 0.07168 0.061721 0.102071 0.100115 

3g0w 0.019878 0.021703 0.022008 0.020347 0.020496 

1vso 0.495952 0.18371 0.734504 0.564495 0.523262 
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3gbb 0.079396 0.043323 0.079835 0.07907 0.081164 

3fv1 0.074191 0.075466 0.027841 0.026175 0.074273 

2b1v 0.085695 0.086177 0.086663 0.085981 0.08641 

2qe4 0.061592 0.060201 0.062487 0.060416 0.061695 

2p15 0.032595 0.033149 0.033114 0.031935 0.032867 

2y5h 0.045204 0.213226 0.205132 0.217057 0.119734 

2xbv 0.118507 0.273504 0.074522 0.074405 0.055644 

1mq6 0.143113 0.038364 0.131503 0.074272 0.17794 

1loq 0.105525 0.106205 0.208665 0.673875 0.673723 

1lol 0.373478 0.372205 0.377801 0.376784 0.386408 

1x1z 0.105799 0.044291 0.101948 0.103213 0.102762 

4tim 0.133181 0.181979 0.181419 0.106235 0.161146 

2v2h 0.187791 0.169115 0.162374 0.164893 0.187128 

1trd 0.181769 0.181867 0.186901 0.182973 0.177577 

1uto 0.171927 1.29562 0.13392 0.116194 0.102421 

3gy4 0.135272 0.133673 0.134805 0.133344 0.057727 

1o3f 0.160773 0.150195 0.169111 0.161324 0.172313 

1jys 0.168694 0.168268 0.168088 0.168576 0.167923 

1nc1 0.119429 0.118629 0.035179 0.11904 0.115718 

1y6q 0.045744 0.042219 0.0487 0.04664 0.046889 

3pce 0.505288 0.503824 0.504381 0.505143 0.504473 
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3pcn 0.504359 0.503069 0.50708 0.506112 0.504146 

3pcj 0.110679 0.14502 0.14404 0.111462 0.144848 

2pgz 0.035372 0.034176 0.035302 0.035546 0.035288 

2wn9 0.688756 0.667447 0.733329 0.683508 0.682895 

2x00 0.051149 0.051491 0.051188 0.050164 0.050383 

2r23 0.665934 0.378811 0.450919 0.604481 0.096094 

2bmk 0.742764 0.564715 0.162739 0.129927 0.150087 

1kel 0.190619 0.142795 0.104597 0.201122 0.162858 

3ozt 0.047397 0.047235 0.04901 0.044243 0.755259 

3oe5 0.076626 0.094928 0.872022 1.10195 0.053792 

3nw9 0.120613 0.030985 0.0542 0.030006 0.899464 

1zea 1.14607 0.927625 0.845539 1.00503 0.904954 

2cgr 0.028539 0.063947 0.029385 0.028611 0.029107 

1igj 0.194001 0.747749 0.19151 0.194491 0.262663 

1lbk 0.86347 0.716926 0.692176 0.692709 0.81164 

2gss 0.308858 0.32521 0.329281 0.327971 0.331653 

3ie3 0.30149 0.316564 0.308627 0.307428 0.333198 

3n7a 0.026968 0.030307 0.023302 0.029574 0.025831 

3n86 0.073131 0.100625 0.141036 0.10057 0.099894 

2y71 0.023965 0.023754 0.025468 0.024652 0.023034 

3lka 0.558311 0.576199 0.558523 0.558633 0.558266 
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3ehy 0.364523 0.428754 0.10786 0.835711 0.359236 

3f17 0.29984 0.264317 0.300133 0.299964 0.232066 

1adl 0.311487 0.661338 0.267522 0.312907 0.366354 

1g74 0.204818 0.603642 0.263032 0.385918 0.425068 

2nnq 0.101886 0.064746 0.065463 0.06331 0.085559 

1str 0.295238 0.554592 0.98242 0.718696 0.546531 

1swr 0.065922 0.059053 0.063627 1.94007 1.27661 

3rdo 0.061723 0.098083 0.098049 0.060724 0.097906 

3jvk 1.06774 0.717507 0.890145 0.648827 0.963844 

3u5j 0.021448 0.025223 0.020979 0.020988 0.020977 

3mxf 0.041607 0.079702 0.069507 0.041142 0.041123 

3cft 0.555902 0.556521 0.556207 0.556068 0.106687 

3nex 0.317273 0.330798 0.317712 0.320812 0.316126 

2g5u 0.739975 0.698795 0.042444 0.363853 0.702474 

3dxg 0.581314 0.552961 0.582854 0.584175 0.582601 

1o0m 0.114047 0.045578 0.098817 0.504581 0.114381 

1u1b 0.321233 0.196468 1.05324 0.773847 0.244185 

1sv3 0.225409 0.270829 0.240327 0.22231 0.242356 

1jq8 0.912282 0.999078 0.947686 1.04487 1.157 

2arm 0.534324 0.491723 0.472362 0.490895 0.508076 

3ov1 0.152477 0.254392 0.134056 0.566745 0.094435 
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3s8o 0.173322 0.919864 0.878997 0.82331 0.624086 

1jyq 1.04719 1.01405 0.920998 1.40512 0.479733 

1a30 0.738402 0.716488 0.66036 0.735641 0.541558 

3cyx 0.051027 0.084547 0.054958 0.054636 0.082251 

2i4x 0.351729 0.232694 1.14533 0.324256 0.336977 

1d7j 0.18678 0.341063 0.190212 0.142697 0.146194 

1fki 0.023042 0.023065 0.023052 0.023065 0.023052 

Table 14 5 independent runs of PSOxVina 

10.2 Automated Pipe-line Scripts 

10.2.1 run_vina.sh 

#!/bin/bash 

# utako: from Kami but modified options in prepare_ligand4 & prepare_receptor4 

 

#TOOL_DIR=/Library/MGLTools/latest/MGLToolsPckgs/AutoDockTools/Utilities24 

TOOL_DIR=/usr/local/MGLTools-1.5.7rc1/MGLToolsPckgs/AutoDockTools/Utilities24 

VINA=/home/kami/autodock_vina_1_1_2/build/linux/release/vina 

 

infile=2012_core_name.lst 

count=0 

 

for nameList in `grep -v "\#" $infile | cut -f1 -d\ ` ; do   

 

 #nameList=3ov1 

 #if [ $count -ge 1 ]; then 

 # exit 0 

 #fi 

count=`expr $count + 1` 
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   echo "================================================" 

   echo "================================================" 

   echo "[$count]Processing data $nameList " 

   echo "================================================" 

   echo "================================================" 

 

    

   cd $nameList 

#if [ $count -ge 192 ]; then 

   
rm ./rmsd2expt.log ./*.pdbqt ./*fit.pdb ./*randomize.pdb ./*vinadocked.pdb ./vina.log ./vina_score_only.log ./config.txt ./*_lig
and.pdb ./fit.log  

 

   ${TOOL_DIR}/prepare_ligand4.py -l ./${nameList}_ligand.mol2 -o ./${nameList}_ligand.pdbqt -A 'hydrogens' -U 
'nphs_lps_waters' 

   ${TOOL_DIR}/prepare_receptor4.py -r ./${nameList}_protein.pdb -o ./${nameList}_protein.pdbqt -A 'hydrogens' -U 
'nphs_lps_waters'  

     

 

   cut -c-66 ${nameList}_ligand.pdbqt > ${nameList}_ligand.pdb   # pdb can be understood by GROMACS 

  

   awk -f ../pdbbox.awk ${nameList}_pocket.pdb  > config.txt 

 

   $VINA --receptor ${nameList}_protein.pdbqt --ligand ${nameList}_ligand.pdbqt --config config.txt --num_modes 1  --log 
vina.log --cpu 8 --exhaustiveness 8 

 

   # compare to expt structure 

   cut -c-66 ${nameList}_ligand_out.pdbqt > ${nameList}_ligand_vinadocked.pdb 

   echo -e "0\n0" |g_confrms -f1 ${nameList}_ligand.pdb -f2 ${nameList}_ligand_vinadocked.pdb -nofit > fit.log 

   rmsd=`cat fit.log |grep lsq|awk '{ print $9 }'` 

   echo "RMSD to expt structure ${nameList}: $rmsd" 

   echo $rmsd > rmsd2expt.log 

#fi 

   cd ../ 
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   #read ans 

done 

 

exit 0 

10.2.2 collect_score.sh 

#!/bin/bash 

 

 

infile=2012_core_data.lst 

count=0 

 

grep -v "#" $infile | awk '{ print  $4 " "}' > t1.tmp 

 

if [ -e t2.tmp ]; then 

    rm t2.tmp 

fi  

 

touch t2.tmp 

 

for nameList in `grep -v "\#" $infile | cut -f1 -d\ ` ; do   

 

   count=`expr $count + 1` 

   echo "Processing data ${count}. $nameList " 

 

   cd $nameList  

   score=` tail vina.log|grep 0.000|awk '{ print $2 }' | head -n 1` 

  # score=`tail -2 vina.log|grep 1|awk '{ print $2 }'` 

   echo "--$score"  

   cd ../ 

 

   echo "$score" >> t2.tmp 

done 
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paste -d\  t1.tmp t2.tmp > vina_score.dat 

rm t1.tmp t2.tmp 

exit 0 

10.2.3 p.pro 

function readtable,filename 

   cmd="wc "+filename 

   spawn,cmd,res 

   cmd="head -1 "+filename +"| awk '{ print NF }'" 

   spawn,cmd,nrcol 

   data=dblarr(nrcol[0],res[0]) 

   openr,1,filename & readf,1,data & close,1 

   return,data 

end 

 

pro p 

 

old_X=!X 

old_Y=!Y 

old_P=!P 

!X.STYLE=1         ;; 1: exact axis to the data range 

!Y.STYLE=1   

;!X.TICKINTERVAL=20 ;; interval/range b/w major tickmarks 

;!Y.TICKINTERVAL=5  

!X.MINOR=2         ;; # of minor intervals, 0: default, -1: suppress 

!Y.MINOR=2 

!X.TICKLEN=0.02 

!Y.TICKLEN=0.02 

!X.THICK=7         ;; axis thickness 

!Y.THICK=7         ;; 

!P.THICK=7.0       ;; thickess of the line connecting points, better 3.0 

!P.CHARSIZE=1.5    ;; font size, e.g. 1.8 
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!P.CHARTHICK=5.0   ;; font thickness  

title='!3' 

xtitle='!3time (ns)'   ;; !3 standard character set 

angstrom = '!3' + STRING(197B) + '!X'  

ytitle='!3area per lipid (nm!E2!N)' 

 

set_plot,'ps' 

loadct,13 

 

device,filename="p.eps",/ENCAPSULATED,/color 

data=readtable("vina_score.dat") 

vinascore=data[1,*] 

RT=8.3144621*300.0/1000.0 

ki=exp(vinascore*4.184/RT) 

pki=-1.0*alog10(ki) 

 

 

fitted=linfit(data[0,*],pki) 

a=fitted[0] 

b=fitted[1] 

print,fitted 

pearson=correlate(data[0,*],pki) 

print,pearson 

plot,data[0,*],pki,psym=SYM(1),xtitle="experimental binding affinity",ytitle="predicted binding 
affinity",/isotropic,xrange=[1,12],yrange=[1,12] 

oplot,[0,13],[a,a+b*13.0],thick=3 

xyouts,1.5,11,"correlation ="+strcompress(string(pearson)) 

 

device,/close 

 

!X=old_X 

!Y=old_Y 

!P=old_P 
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stop 

end 

10.3 Source Code of PSOxVina 

10.3.1 mutate.cpp 

/* 

 

   Copyright (c) 2006-2010, The Scripps Research Institute 

 

   Licensed under the Apache License, Version 2.0 (the "License"); 

   you may not use this file except in compliance with the License. 

   You may obtain a copy of the License at 

 

       http://www.apache.org/licenses/LICENSE-2.0 

 

   Unless required by applicable law or agreed to in writing, software 

   distributed under the License is distributed on an "AS IS" BASIS, 

   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 

   See the License for the specific language governing permissions and 

   limitations under the License. 

 

   Author: Dr. Oleg Trott <ot14@columbia.edu>,  

           The Olson Lab,  

           The Scripps Research Institute 

 

*/ 

 

#include "mutate.h" 

#include <iostream> 

 

sz count_mutable_entities(const conf& c) { 

 sz counter = 0; 
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 VINA_FOR_IN(i, c.ligands) 

  counter += 2 + c.ligands[i].torsions.size(); 

 VINA_FOR_IN(i, c.flex) 

  counter += c.flex[i].torsions.size(); 

 return counter; 

} 

 

// does not set model 

void mutate_conf(conf& c, const model& m, fl amplitude, rng& generator) { // ONE OF: 2A for position, similar amp for 
orientation, randomize torsion 

 std::cout<< "Enter the normal mutate" << '\n'; 

 sz mutable_entities_num = count_mutable_entities(c); 

 if(mutable_entities_num == 0) return; 

 int which_int = random_int(0, int(mutable_entities_num - 1), generator); 

 VINA_CHECK(which_int >= 0); 

 sz which = sz(which_int); 

 VINA_CHECK(which < mutable_entities_num); 

 

 VINA_FOR_IN(i, c.ligands) { 

  if(which == 0) { c.ligands[i].rigid.position += amplitude * random_inside_sphere(generator); return; } 

  --which; 

  if(which == 0) {  

   fl gr = m.gyration_radius(i);  

   if(gr > epsilon_fl) { // FIXME? just doing nothing for 0-radius molecules. do some other 
mutation? 

    vec rotation;  

    rotation = amplitude / gr * random_inside_sphere(generator);  

    quaternion_increment(c.ligands[i].rigid.orientation, rotation); 

   } 

   return;  

  } 

  --which; 

  if(which < c.ligands[i].torsions.size()) { c.ligands[i].torsions[which] = random_fl(-pi, pi, generator); return; } 
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  which -= c.ligands[i].torsions.size(); 

 } 

 VINA_FOR_IN(i, c.flex) { 

  if(which < c.flex[i].torsions.size()) { c.flex[i].torsions[which] = random_fl(-pi, pi, generator); return; } 

  which -= c.flex[i].torsions.size(); 

 } 

} 

 

// does not set model 

void mutate_conf(output_type& candidate, const model& m, fl amplitude, rng& generator, pso* particle,const precalculate& 
p ,const igrid& ig,change& g,const vec& v,quasi_newton& quasi_newton_par,int step) { // ONE OF: 2A for position, similar amp 
for orientation, randomize torsion 

 //conf c = candidate.c; 

 sz mutable_entities_num = count_mutable_entities(candidate.c); 

 if(mutable_entities_num == 0) return; 

 int which_int = random_int(0, int(mutable_entities_num - 1), generator); 

 VINA_CHECK(which_int >= 0); 

 sz which = sz(which_int); 

 VINA_CHECK(which < mutable_entities_num); 

 

  

 int y; 

 VINA_FOR_IN(i, candidate.c.ligands) { 

    

  model tmp_m = m; 

  const vec authentic_v(1000, 1000, 1000); 

  //loop for each particle 

   

   //Take part the position (either position or orientation or torsion) 

   if(which == 0) { 

    

     

   for (y=0;y<particle->number;y++){ 
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    //evaulate the fitness function (calculate the energy) 

    //double energy = tmp_m.eval(p,ig,v,c)-tmp_m.eval_intramolecular(p, authentic_v, 
c);   //remark on 2/4/2014 

     

    candidate.c.ligands[i].rigid.position = particle->getCurrentPosition(y); 

    candidate.c.ligands[i].rigid.orientation = particle->getCurrentOrientation(y); 

    for(int z=0;z<candidate.c.ligands[i].torsions.size();z++) 

     candidate.c.ligands[i].torsions[z] = particle->getCurrentTorsion(i,z); 

     

    //double energy = tmp_m.eval_deriv(p, ig, v, candidate.c, g); //(const 
precalculate& p, const igrid& ig, const vec& v, const conf& c, change& g) 

    //double energy = tmp_m.eval(p,ig,v,candidate.c)-tmp_m.eval_intramolecular(p, 
authentic_v, candidate.c);  

    //if(energy < 0) 

    quasi_newton_par(tmp_m, p, ig, candidate, g, v); 

    //else 

    //candidate.e = energy; 

    //std::cout<<"Energy calculated by quasi newton:"<< candidate.e << "Energy 
Calculate by formula:" << energy << '\n'; 

       

    //set the personal best(energy value and position); 

    if(candidate.e < particle->getPersonalBest(y)) 

    { 

     //quasi_newton_par(tmp_m, p, ig, candidate, g, v); 

     particle->updatePersonalBest(y,candidate.e); 

      

     particle->updateBestPosition(y,candidate.c.ligands[i].rigid.position); 

     particle-
>updateBestOrientation(y,candidate.c.ligands[i].rigid.orientation); 

     for(int z=0;z<candidate.c.ligands[i].torsions.size();z++) 

      particle->updateBestTorsion(y, 
candidate.c.ligands[i].torsions[z],z); 

     //set the global best(energy value and position); 

     if(candidate.e < pso::gbest_fit) 
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     { 

      std::cout << "current_P:" << candidate.e << "
 quasi_e:"<<candidate.e << " the current best_P:" << pso::gbest_fit<<" Current number steps" <<step <<'\n'; 

      particle->updateGlobalBest(y); 

       

      pso::gbest_position = candidate.c.ligands[i].rigid.position; 

      pso::gbest_orientation = 
candidate.c.ligands[i].rigid.orientation; 

      for(int z=0;z<candidate.c.ligands[i].torsions.size();z++) 

       pso::gbest_torsion[z] = 
candidate.c.ligands[i].torsions[z]; 

     } 

    } 

     

     

    //update each particle in every dimension 

    particle->updateVelocity(generator,y); 

    //compute the new position; 

    particle->computeNewPositions(y); 

   } 

 

   for(int z=0;z<candidate.c.ligands[i].torsions.size();z++) 

    candidate.c.ligands[i].torsions[z] = pso::gbest_torsion[z]; 

   candidate.c.ligands[i].rigid.orientation = pso::gbest_orientation; 

   candidate.c.ligands[i].rigid.position = pso::gbest_position; 

    //candidate.e = pso::gbest_fit; 

    return;  

   } 

    

    

   --which; 

   //Take part orientation (either position or orientation or torsion) 

   if(which == 0) {  

    fl gr = m.gyration_radius(i);  
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    if(gr > epsilon_fl) { // FIXME? just doing nothing for 0-radius molecules. do some 
other mutation? 

    

     for (y=0;y<particle->number;y++){ 

 

     //evaulate the fitness function (calculate the energy) 

     //double energy1 = tmp_m.eval(p,ig,v,c)-tmp_m.eval_intramolecular(p, 
authentic_v, c); 

     //I saw this formula in main.cpp 

      candidate.c.ligands[i].rigid.position = particle-
>getCurrentPosition(y); 

      candidate.c.ligands[i].rigid.orientation = particle-
>getCurrentOrientation(y); 

      for(int z=0;z<candidate.c.ligands[i].torsions.size();z++) 

       candidate.c.ligands[i].torsions[z] = particle-
>getCurrentTorsion(i,z); 

      //double energy = tmp_m.eval_deriv(p, ig, v, candidate.c, g); 
//(const precalculate& p, const igrid& ig, const vec& v, const conf& c, change& g) 

     //double energy = tmp_m.eval(p,ig,v,candidate.c)-
tmp_m.eval_intramolecular(p, authentic_v, candidate.c);  

 

     //if(energy < 0) 

     quasi_newton_par(tmp_m, p, ig, candidate, g, v); 

     //else 

     //candidate.e = energy; 

     //std::cout<<"Energy calculated by quasi newton:"<< candidate.e << 
"Energy Calculate by formula:" << energy << '\n'; 

     //double energy1 = candidate.e; 

       

      

     //set the personal best(energy value and position); 

     if(candidate.e < particle->getPersonalBest(y)) 

     { 

      //quasi_newton_par(tmp_m, p, ig, candidate, g, v); 

       

      particle->updatePersonalBest(y,candidate.e); 
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      particle-
>updateBestPosition(y,candidate.c.ligands[i].rigid.position); 

      particle-
>updateBestOrientation(y,candidate.c.ligands[i].rigid.orientation); 

      for(int z=0;z<candidate.c.ligands[i].torsions.size();z++) 

       particle->updateBestTorsion(y, 
candidate.c.ligands[i].torsions[z],z); 

 

      //set the global best(energy value and position); 

      if(candidate.e< pso::gbest_fit)//pso::gbest_fitForO) 

      { 

        

       std::cout << "current_O:" << candidate.e << "
 quasi_e:"<<candidate.e <<" the current best_O:" << pso::gbest_fit<<" Current number steps"<<step<<'\n'; 

  

       particle->updateGlobalBest(y);  
     

 

       pso::gbest_position = 
candidate.c.ligands[i].rigid.position; 

       pso::gbest_orientation = 
candidate.c.ligands[i].rigid.orientation; 

       for(int 
z=0;z<candidate.c.ligands[i].torsions.size();z++) 

        pso::gbest_torsion[z] = 
candidate.c.ligands[i].torsions[z]; 

      } 

     } 

 

    

     //update each particle in every dimension 

     particle->updateVelocityO(generator,y); 

     //compute the new position; 

     particle->computeNewOrientation(y); 

     } 

    } 
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    for(int z=0;z<candidate.c.ligands[i].torsions.size();z++) 

     candidate.c.ligands[i].torsions[z] = pso::gbest_torsion[z]; 

    candidate.c.ligands[i].rigid.orientation = pso::gbest_orientation; 

    candidate.c.ligands[i].rigid.position = pso::gbest_position; 

    return;  

   } 

    

   /*Torsions*/ 

   --which; 

   if(which < candidate.c.ligands[i].torsions.size()) { 

      

    for (y=0;y<particle->number;y++){ 

      

      

    //evaulate the fitness function (calculate the energy) 

//    double energy = tmp_m.eval_deriv(*p, *ig, *v, c, *g); //(const precalculate& p, 
const igrid& ig, const vec& v, const conf& c, change& g) 

    //double energy2 = tmp_m.eval(p,ig,v,c)-tmp_m.eval_intramolecular(p, 
authentic_v, c); 

     candidate.c.ligands[i].rigid.position = particle->getCurrentPosition(y); 

     candidate.c.ligands[i].rigid.orientation = particle-
>getCurrentOrientation(y); 

     for(int z=0;z<candidate.c.ligands[i].torsions.size();z++) 

      candidate.c.ligands[i].torsions[z] = particle-
>getCurrentTorsion(i,z); 

     //double energy = tmp_m.eval_deriv(p, ig, v, candidate.c, g); //(const 
precalculate& p, const igrid& ig, const vec& v, const conf& c, change& g) 

     //double energy = tmp_m.eval(p,ig,v,candidate.c)-
tmp_m.eval_intramolecular(p, authentic_v, candidate.c); 

    // if(energy < 0) 

     quasi_newton_par(tmp_m, p, ig, candidate, g, v); 

    // else 

    // candidate.e = energy; 

     //std::cout<<"Energy calculated by quasi newton:"<< candidate.e << 
"Energy Calculate by formula:" << energy << '\n'; 

     //double energy2 = candidate.e; 



Improving Protein-Ligand Docking by Particle Swarm Optimization 

81 of 104  08 October 2014 

    //set the personal best(energy value and position); 

    if(candidate.e < particle->getPersonalBest(y)) 

    { 

     //quasi_newton_par(tmp_m, p, ig, candidate, g, v); 

     particle->updatePersonalBest(y,candidate.e); 

     for(int z=0;z<candidate.c.ligands[i].torsions.size();z++) 

      particle->updateBestTorsion(y, 
candidate.c.ligands[i].torsions[z],z);     particle-
>updateBestPosition(y,candidate.c.ligands[i].rigid.position); 

     particle-
>updateBestOrientation(y,candidate.c.ligands[i].rigid.orientation); 

      

     //set the global best(energy value and position); 

     if(candidate.e < pso::gbest_fit)//pso::gbest_fitForT[which]) 

     { 

      std::cout << "current_T:" << candidate.e << "
 quasi_e:"<<candidate.e<< " the current best_T:" << pso::gbest_fit<<" Current number step"<<step <<'\n'; 

      particle->updateGlobalBest(y); 

       

      pso::gbest_position = candidate.c.ligands[i].rigid.position; 

      pso::gbest_orientation = 
candidate.c.ligands[i].rigid.orientation; 

      for(int z=0;z<candidate.c.ligands[i].torsions.size();z++) 

       pso::gbest_torsion[z] = 
candidate.c.ligands[i].torsions[z]; 

     } 

    } 

 

   

    //update each particle in every dimension 

    particle->updateVelocityT(generator,y,which); 

    //compute the new position; 

    particle->computeNewTorsion(y,generator,which); 

    } 
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    for(int z=0;z<candidate.c.ligands[i].torsions.size();z++) 

     candidate.c.ligands[i].torsions[z] = pso::gbest_torsion[z]; 

    candidate.c.ligands[i].rigid.orientation = pso::gbest_orientation; 

    candidate.c.ligands[i].rigid.position = pso::gbest_position; 

     

    return;  

   } 

   which -= candidate.c.ligands[i].torsions.size(); 

  } 

   

  

 VINA_FOR_IN(i, candidate.c.flex) { 

  if(which < candidate.c.flex[i].torsions.size()) { candidate.c.flex[i].torsions[which] = random_fl(-pi, pi, 
generator); return; } 

  which -= candidate.c.flex[i].torsions.size(); 

 } 

} 

 

10.3.2 monte_carlo.cpp 

/* 

HETATM   27  H   STI   202      10.733  94.264  65.567  1.00  0.00 

 

   Copyright (c) 2006-2010, The Scripps Research Institute 

 

   Licensed under the Apache License, Version 2.0 (the "License"); 

   you may not use this file except in compliance with the License. 

   You may obtain a copy of the License at 

 

       http://www.apache.org/licenses/LICENSE-2.0 

 

   Unless required by applicable law or agreed to in writing, software 

   distributed under the License is distributed on an "AS IS" BASIS, 

   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 
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   See the License for the specific language governing permissions and 

   limitations under the License. 

 

   Author: Dr. Oleg Trott <ot14@columbia.edu>,  

           The Olson Lab,  

           The Scripps Research Institute 

 

*/ 

 

#include "monte_carlo.h" 

#include "coords.h" 

#include "quasi_newton.h" 

#include "mutate.h" 

 

output_type monte_carlo::operator()(model& m, const precalculate& p, const igrid& ig, const precalculate& p_widened, const 
igrid& ig_widened, const vec& corner1, const vec& corner2, incrementable* increment_me, rng& generator) const { 

 output_container tmp; 

 this->operator()(m, tmp, p, ig, p_widened, ig_widened, corner1, corner2, increment_me, generator); // call the 
version that produces the whole container 

 VINA_CHECK(!tmp.empty()); 

 return tmp.front(); 

} 

 

bool metropolis_accept(fl old_f, fl new_f, fl temperature, rng& generator) { 

 if(new_f < old_f) return true; 

 const fl acceptance_probability = std::exp((old_f - new_f) / temperature); 

 return random_fl(0, 1, generator) < acceptance_probability; 

} 

 

void monte_carlo::single_run(model& m, output_type& out, const precalculate& p, const igrid& ig, rng& generator) const { 

 conf_size s = m.get_size(); 

 change g(s); 

 vec authentic_v(1000, 1000, 1000); 
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 out.e = max_fl; 

 output_type current(out); 

 quasi_newton quasi_newton_par; quasi_newton_par.max_steps = ssd_par.evals; 

  

 //comment by kami 

 //std::cout<< "enter single run" << '\n'; 

  

 VINA_U_FOR(step, num_steps) { 

  output_type candidate(current.c, max_fl); 

   

  //Enter key point 

  mutate_conf(candidate.c, m, mutation_amplitude, generator); 

   

  quasi_newton_par(m, p, ig, candidate, g, hunt_cap); 

  if(step == 0 || metropolis_accept(current.e, candidate.e, temperature, generator)) { 

   quasi_newton_par(m, p, ig, candidate, g, authentic_v); 

   current = candidate; 

   if(current.e < out.e) 

    out = current; 

  } 

 } 

 quasi_newton_par(m, p, ig, out, g, authentic_v); 

} 

 

void monte_carlo::many_runs(model& m, output_container& out, const precalculate& p, const igrid& ig, const vec& corner1, 
const vec& corner2, sz num_runs, rng& generator) const { 

 conf_size s = m.get_size(); 

 VINA_FOR(run, num_runs) { 

  output_type tmp(s, 0); 

  tmp.c.randomize(corner1, corner2, generator); 

  single_run(m, tmp, p, ig, generator); 

  out.push_back(new output_type(tmp)); 

 } 
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 out.sort(); 

} 

 

output_type monte_carlo::many_runs(model& m, const precalculate& p, const igrid& ig, const vec& corner1, const vec& 
corner2, sz num_runs, rng& generator) const { 

 output_container tmp; 

 many_runs(m, tmp, p, ig, corner1, corner2, num_runs, generator); 

 VINA_CHECK(!tmp.empty()); 

 return tmp.front(); 

} 

 

 

// out is sorted 

void monte_carlo::operator()(model& m, output_container& out, const precalculate& p, const igrid& ig, const precalculate& 
p_widened, const igrid& ig_widened, const vec& corner1, const vec& corner2, incrementable* increment_me, rng& generator) 
const { 

 vec authentic_v(1000, 1000, 1000); // FIXME? this is here to avoid max_fl/max_fl 

 conf_size s = m.get_size(); 

 change g(s); 

 output_type tmp(s, 0); 

 tmp.c.randomize(corner1, corner2, generator);  //first randomize 

 fl best_e = max_fl; 

 quasi_newton quasi_newton_par; quasi_newton_par.max_steps = ssd_par.evals; 

 int birds_factor = (int)(tmp.c.ligands[0].torsions.size()/10); 

 //init pso (argument:number of particle,range of space,seed) 

 pso particle(birds_factor > 1 ? (int)(8/birds_factor) : 8 ,corner1,corner2,generator,tmp.c); 

 //pso particle(8,corner1,corner2,generator,tmp.c); 

 //std::cout<< max_fl << '\n'; 

 double energy=0; 

 int count=0; 

 //main loop 

 //int tmp_step = 0; 

 std::cout<< "Number of steps::::::" << num_steps << " Torsion_size"<< tmp.c.ligands[0].torsions.size() <<'\n'; 

 VINA_U_FOR(step, num_steps) { 
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 //std::cout<< "Current of steps:::::" << step << '\n'; 

  if(increment_me) 

   ++(*increment_me); 

  output_type candidate = tmp; 

 

  //particle.print(); 

  //orginial::mutate_conf(candidate.c, m, mutation_amplitude, generator); 

  mutate_conf(candidate, m, mutation_amplitude, 
generator,&particle,p,ig,g,hunt_cap,quasi_newton_par,step); //for each particle loop 

  //std::cout<<"Finish mutate" <<'\n'; 

   //candidate.c.ligands[0].rigid.position = pso::gbest_position; 

   //candidate.c.ligands[0].rigid.orientation = pso::gbest_orientation; 

   

  //quasi_newton_par(m, p, ig, candidate, g, hunt_cap); 

 

   

  if(step == 0 || metropolis_accept(tmp.e, candidate.e, temperature, generator)) { 

   tmp = candidate; 

   m.set(tmp.c); // FIXME? useless? 

 

   // FIXME only for very promising ones 

   if(tmp.e < best_e || out.size() < num_saved_mins) { 

    quasi_newton_par(m, p, ig, tmp, g, authentic_v); 

    m.set(tmp.c); // FIXME? useless? 

    tmp.coords = m.get_heavy_atom_movable_coords(); 

    add_to_output_container(out, tmp, min_rmsd, num_saved_mins); // 20 - max size 

    if(tmp.e < best_e) 

     best_e = tmp.e; 

   } 

  } 

 

/* 

  std::string name = "./movie/test_out_"; 
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  char num[20]; 

  sprintf(num,"%d",step); 

  name += num; 

  name += ".pdbqt"; 

 

  ofile f(path(name,boost::filesystem::native));  

  m.write_model(f,1,""); 

*/ 

 

 

  /***Criteria defined by Kami***/ 

   

   

  //if(std::abs(pso::gbest_fit - energy) < 0.0001*(num_steps / 10000)) 

  if(std::abs(pso::gbest_fit - energy) < 0.0001) 

  { 

   //std::cout << "count" << count << '\n'; 

   count +=1; 

   //double factor = 0.05/(num_steps / 10000); 

   //if(count >  500 - 200*std::pow(3/4,(int)(candidate.c.ligands[0].torsions.size()/10))  ) 

   if(count > 350) 

   { 

    //tmp_step=(tmp_step == 0?  step : tmp_step); 

    //#std::cout << "Energy no changed since " << tmp_step << '\n'; 

    std::cout << "Terminiated at " << step << '\n'; 

    step = num_steps; //break the loop 

    count = 0; 

   } 

  }else{ 

   //tmp_step = 0; 

   energy = pso::gbest_fit; 

   count =0; 
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  } 

  

 } 

 

  

 std:: cout << pso::gbest_fit << '\n'; 

  

 VINA_CHECK(!out.empty()); 

 VINA_CHECK(out.front().e <= out.back().e); // make sure the sorting worked in the correct order 

} 

10.3.3 pso.cpp 

#include "pso.h" 

#include "random.h" 

 

    // the vector of degree of freedom 

 qt pso::gbest_orientation; 

 fl* pso::gbest_torsion; 

 vec pso::gbest_position; 

 

 double pso::gbest_fit; 

 

 pso::pso(int number,const vec corner1,const vec corner2, rng& g,conf& c){ 

 

    sz torsionSize = c.ligands[0].torsions.size(); 

    this->w = 0.36; 

    this->R1Max_ = 1; 

    this->R1Min_ = 0; 

    this->R2Max_ = 1; 

    this->R2Min_ = 0; 

    this->c1 = 0.99; 

    this->c2 = 0.99; 

    double psi = c1+c2; 
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    //double k = 2 / (std::abs(2-psi-(std::sqrt(psi*psi-4)))); 

    double k =1; 

    this->c1 *= k; 

    this->c2 *= k; 

    this->w *= k; 

    this->g = g; 

    this->corner1[0] = corner1[0];   //minmum 

    this->corner1[1] = corner1[1]; 

    this->corner1[2] = corner1[2]; 

    this->corner2[0] = corner2[0];   //maximum 

    this->corner2[1] = corner2[1]; 

    this->corner2[2] = corner2[2]; 

    this->torsionSize = (int)torsionSize; 

    this->number = number; 

     

    pso::gbest_torsion = new fl[torsionSize]; 

    

  init(g,c); 

   

 } 

  

 void pso::init(rng &g,conf& c) 

 { 

 

  int i; 

  for(i=0;i<this->number;i++) 

  { 

   bird abc; 

   //set position part 

   abc.velocity = random_in_box(this->corner1,this->corner2,g); 

   abc.current_position = random_in_box(this->corner1,this->corner2,g); 

   //std::cout <<abc.current_position[0] << ':'<<abc.current_position[1]<< ':' 
<<abc.current_position[2] <<'\n'; 
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   abc.pbest_pos[0]=0; 

   abc.pbest_pos[1]=0; 

   abc.pbest_pos[2]=0; 

   abc.pbest_fit = 1.7976931348623158e+308; 

   abc.tmp_fit = 1.7976931348623158e+308; 

   //set orientation part 

   abc.vO = random_inside_sphere(g); 

   qt tmp_o = c.ligands[0].rigid.orientation; 

   quaternion_increment(tmp_o,  random_inside_sphere(g)); 

   abc.current_orientation = tmp_o; 

    

   //init the array for the number of torsion 

   abc.current_torsion=new fl[this->torsionSize]; 

   abc.vT=new fl[this->torsionSize]; 

   abc.pbest_torsion=new fl[this->torsionSize]; 

    

   for(int x=0;x<this->torsionSize;x++) 

   { 

    abc.vT[x] = random_fl(-pi, pi, g); 

     

    abc.current_torsion[x] = random_fl(-pi, pi, g); 

    

   } 

    

   particle.push_back(abc); 

  } 

   

   

  pso::gbest_fit = 1.7976931348623158e+308; 

 

 } 
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 /* 

 void pso::setDefaultOrientation(qt defaultOrientation,int i) 

 { 

   

   particle[i].current_orientation = defaultOrientation; 

   

 } 

 void pso::setDefaultTorsion(fl defaultTorsion,int i,sz which) 

 { 

 

   particle[i].current_torsion[which] = defaultTorsion; 

   

 } 

 */ 

  

 void pso::updateVelocity(rng& generator,int i) 

 { 

   double r1 = random_double(this->R1Min_,this->R1Max_,generator); 

   double r2 = random_double(this->R2Min_,this->R2Max_,generator); 

    

    

   //std::cout<< "w:" << w <<" c1:"<<c1 << " c2:"<<c2<<"\n"; 

   //std::cout << " before compute new:" << particle[i].velocity[0] << ',' << particle[i].velocity[1] 
<< ','<< particle[i].velocity[2] << '\n'; 

   //std::cout << "1:" << particle[i].velocity[1] << '*' << w << '+' << c1 << "*(" << 
particle[i].pbest_pos[1]<< '-' <<particle[i].current_position[1]<< ")+" << c2 <<"*("<<pso::gbest_position[1]<<'-
'<<particle[i].pbest_pos[1]<<')'<<'\n'; 

   particle[i].velocity[0] = particle[i].velocity[0]*w+c1*r1*(particle[i].pbest_pos[0]-
particle[i].current_position[0])+c2*r2*(pso::gbest_position[0]-particle[i].pbest_pos[0]); 

   particle[i].velocity[1] = particle[i].velocity[1]*w+c1*r1*(particle[i].pbest_pos[1]-
particle[i].current_position[1])+c2*r2*(pso::gbest_position[1]-particle[i].pbest_pos[1]); 

   particle[i].velocity[2] = particle[i].velocity[2]*w+c1*r1*(particle[i].pbest_pos[2]-
particle[i].current_position[2])+c2*r2*(pso::gbest_position[2]-particle[i].pbest_pos[2]); 

   //particle[i].velocity = k*(particle[i].velocity+c1*r1*(particle[i].pbest_pos-
particle[i].current_position) + c2*r2*(pso::gbest_position-particle[i].pbest_pos)); 

   //std::cout << " after compute new:" << particle[i].velocity[0] << ',' << particle[i].velocity[1] << 
','<< particle[i].velocity[2] << '\n'; 
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 } 

 void pso::updateVelocityO(rng& generator,int i) 

 { 

 

      qt p1 = particle[i].pbest_orientation-particle[i].current_orientation; 

      qt p2 = pso::gbest_orientation-particle[i].pbest_orientation; 

   double r1 = random_double(this->R1Min_,this->R1Max_,generator); 

   double r2 = random_double(this->R2Min_,this->R2Max_,generator); 

   //double psi = c1+c2; 

   //double k = 2 / (std::abs(2-psi-(std::sqrt(psi*psi-4)))); 

    

   particle[i].vO = particle[i].vO*this-
>w+c1*r1*quaternion_to_angle(p1)+c2*r2*quaternion_to_angle(p2); 

   //particle[i].vO = k*(particle[i].vO+c1*r1*quaternion_to_angle(p1) + 
c2*r2*quaternion_to_angle(p2)); 

 } 

 void pso::updateVelocityT(rng& generator,int i,sz which) 

 { 

 

   double r1 = random_double(this->R1Min_,this->R1Max_,generator); 

   double r2 = random_double(this->R2Min_,this->R2Max_,generator); 

   //double psi = c1+c2; 

   //double k = 2 / (std::abs(2-psi-(std::sqrt(psi*psi-4)))); 

   //std::cout<<"old velocity:" << particle[i].vT[which]<<"\n"; 

   //std::cout<<"pbest_torsion:" << particle[i].pbest_torsion[which] <<"
 current_torsion:" << particle[i].current_torsion[which] << " gbest_torsion:" << pso::gbest_torsion[which] << 
'\n'; 

   //std::cout<<"p1:" << this->c1*(particle[i].pbest_torsion[which]-
particle[i].current_torsion[which]) << "  p2:" << this->c2*(pso::gbest_torsion[which]-
particle[i].pbest_torsion[which]) <<"\n"; 

   particle[i].vT[which] = particle[i].vT[which]*this->w+c1*r1*(particle[i].pbest_torsion[which]-
particle[i].current_torsion[which])+c2*r2*(pso::gbest_torsion[which]-particle[i].pbest_torsion[which]); 

   //particle[i].vT[which] = k*(particle[i].vT[which]+c1*r1*(particle[i].pbest_torsion[which]-
particle[i].current_torsion[which]) + c2*r2*(pso::gbest_torsion[which]-particle[i].pbest_torsion[which])); 

 

   //std::cout<<"new velocity:" << particle[i].vT[which]<<"\n"; 
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 } 

  

  

 void pso::computeNewPositions(int i) 

 { 

   //std::cout << " before compute new:" << particle[i].current_position[0] <<'+'<< 
particle[i].velocity[0] << ',' << particle[i].current_position[1] <<'+'<< particle[i].velocity[1]<< ','<< particle[i].current_position[2] 
<<'+'<< particle[i].velocity[2]<< '\n'; 

   particle[i].current_position[0] = particle[i].current_position[0] + particle[i].velocity[0]; 

   particle[i].current_position[1] = particle[i].current_position[1] + particle[i].velocity[1]; 

   particle[i].current_position[2] = particle[i].current_position[2] + particle[i].velocity[2]; 

   //std::cout << " after compute new:" << particle[i].current_position[0] << ',' << 
particle[i].current_position[1] << ','<< particle[i].current_position[2] << '\n'; 

    

    

   if(particle[i].current_position[0] < corner1[0]) 

    particle[i].current_position = random_in_box(this->corner1,this->corner2,this->g); 

   if(particle[i].current_position[1] < corner1[1]) 

    particle[i].current_position = random_in_box(this->corner1,this->corner2,this->g); 

   if(particle[i].current_position[2] < corner1[2]) 

    particle[i].current_position = random_in_box(this->corner1,this->corner2,this->g); 

    

   if(particle[i].current_position[0] > corner2[0]) 

    particle[i].current_position = random_in_box(this->corner1,this->corner2,this->g); 

   if(particle[i].current_position[1] > corner2[1]) 

    particle[i].current_position = random_in_box(this->corner1,this->corner2,this->g); 

   if(particle[i].current_position[2] > corner2[2]) 

    particle[i].current_position = random_in_box(this->corner1,this->corner2,this->g); 

 

 } 

 //void pso::computeNewOrientation(void(*increment)(qt&,const vec&),int i) 

    void pso::computeNewOrientation(int i) 

 { 
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   vec tmp_v = particle[i].vO; 

   //std::cout<< " before compute new:" << particle[i].current_orientation.R_component_1() << 
',' << particle[i].current_orientation.R_component_2() << ','<< particle[i].current_orientation.R_component_3() <<','<< 
particle[i].current_orientation.R_component_4()<< "\n"; 

   quaternion_increment(particle[i].current_orientation, tmp_v); 

   //std::cout<< " after compute new:" << particle[i].current_orientation.R_component_1() << ',' 
<< particle[i].current_orientation.R_component_2() << ','<< particle[i].current_orientation.R_component_3()<<','<< 
particle[i].current_orientation.R_component_4()<< "\n"; 

 } 

 void pso::computeNewTorsion(int i,rng& generator,sz which) 

 { 

   //std::cout<< " before compute new:" << particle[i].current_torsion[which] << "velocity:" << 
particle[i].vT[which]<<"\n"; 

   particle[i].current_torsion[which] = particle[i].current_torsion[which] + particle[i].vT[which]; 

   //std::cout<< " after compute new:" << particle[i].current_torsion[which] << "\n"; 

  //particle[i].current_torsion = random_fl(-pi, pi, generator); 

    

   if(particle[i].current_torsion[which] > pi) 

    particle[i].current_torsion[which] = random_fl(-pi, pi, this->g); 

   else if(particle[i].current_torsion[which] < -pi) 

    particle[i].current_torsion[which] = random_fl(-pi, pi, this->g); 

 } 

  

  

 void pso::updatePersonalBest(int i,double e) 

 { 

  particle[i].pbest_fit = e; 

  //particle[i].pbest_pos = particle[i].current_position; 

 } 

 /* 

 void pso::updatePersonalBestO(int i,double e) 

 { 

  //particle[i].pbest_fitForO = e; 

  particle[i].pbest_fit = e; 

  //particle[i].pbest_orientation = particle[i].current_orientation; 
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 } 

 void pso::updatePersonalBestT(int i,double e,sz which) 

 { 

  //particle[i].pbest_fitForT[which] = e; 

  particle[i].pbest_fit = e; 

  //particle[i].pbest_torsion[which] = particle[i].current_torsion[which]; 

 }*/ 

  

 void pso::updateGlobalBest(int i) 

 { 

 

  pso::gbest_fit = particle[i].pbest_fit; 

  //pso::gbest_position = particle[i].pbest_pos; 

 

 } 

 /* 

 void pso::updateGlobalBestO(int i) 

 { 

  //pso::gbest_fitForO = particle[i].pbest_fitForO; 

  pso::gbest_fit = particle[i].pbest_fit; 

  //pso::gbest_orientation = particle[i].pbest_orientation; 

 } 

 void pso::updateGlobalBestT(int i,sz which) 

 { 

  //pso::gbest_fitForT[which] = particle[i].pbest_fitForT[which]; 

  pso::gbest_fit = particle[i].pbest_fit; 

  //pso::gbest_torsion[which] = particle[i].pbest_torsion[which]; 

 } 

 */ 

  

 double pso::getPersonalBest(int i) 

 { 
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  return particle[i].pbest_fit; 

 } 

/* 

 double pso::getTmpFit(int i) 

 { 

  return particle[i].tmp_fit; 

 } 

 void pso::setTmpFit(int i,double e) 

 { 

  particle[i].tmp_fit = e; 

 } 

  

 double pso::getPersonalBestO(int i) 

 { 

  //return particle[i].pbest_fitForO; 

  return particle[i].pbest_fit; 

 } 

 double pso::getPersonalBestT(int i,sz which) 

 { 

  //return particle[i].pbest_fitForT[which]; 

  return particle[i].pbest_fit; 

 } 

 */ 

 

 void pso::updateBestPosition(int i,vec pos) 

 { 

  particle[i].pbest_pos = pos; 

   

 } 

 void pso::updateBestOrientation(int i, qt orientation) 

 { 

  particle[i].pbest_orientation = orientation; 
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 } 

 void pso::updateBestTorsion(int i, fl torsion,sz which) 

 { 

  particle[i].pbest_torsion[which] = torsion; 

 } 

 

/* 

 void pso::setCurrentPosition(int i ,vec pos) 

 {  

  particle[i].current_position = pos; 

 } 

 void pso::setCurrentOrientation(int i ,qt orientation) 

 {  

  particle[i].current_orientation = orientation; 

 } 

 void pso::setCurrentTorsion(int i ,fl torsion, sz which) 

 {  

  particle[i].current_torsion[which] = torsion; 

 } 

 */ 

  

 vec pso::getCurrentPosition(int i) 

 { 

  return particle[i].current_position; 

 } 

  

 qt pso::getCurrentOrientation(int i) 

 { 

  return particle[i].current_orientation; 

 } 

 fl pso::getCurrentTorsion(int i,sz which) 

 { 
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  return particle[i].current_torsion[which]; 

 } 

 

 

 void pso::print() 

 { 

  for(int i=0;i<this->number;i++) 

  { 

   std::cout << "========================bird" << i << "========================" << '\n'; 

   std::cout << "current_position:" << particle[i].current_position[0]<< ',' << 
particle[i].current_position[1] << ',' << particle[i].current_position[2] << '\n';  

   std::cout << "pbest_position:" << particle[i].pbest_pos[0] <<',' << particle[i].pbest_pos[1] << 
','<< particle[i].pbest_pos[2] << '\n'; 

   std::cout << "gbest_position:" << pso::gbest_position[0] <<',' << pso::gbest_position[1] << ','<< 
pso::gbest_position[2] << '\n'; 

     

   std::cout << '\n'; 

   std::cout << "current_orientation:" << particle[i].current_orientation <<'\n'; 

   std::cout << "pbest_orientation:" << particle[i].pbest_orientation <<'\n'; 

   std::cout << "gbest_orientation:" << pso::gbest_orientation <<'\n'; 

   //std::cout << "pbest_fitO:" << particle[i].pbest_fitForO <<'\n'; 

   std::cout << '\n'; 

    

   std::cout << "pbest_fit:" << particle[i].pbest_fit <<'\n'; 

   std::cout << "gbest_fit:" << pso::gbest_fit <<'\n'; 

    

  } 

 } 

10.3.4 mutate.h 

/* 

 

   Copyright (c) 2006-2010, The Scripps Research Institute 

 

   Licensed under the Apache License, Version 2.0 (the "License"); 
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   you may not use this file except in compliance with the License. 

   You may obtain a copy of the License at 

 

       http://www.apache.org/licenses/LICENSE-2.0 

 

   Unless required by applicable law or agreed to in writing, software 

   distributed under the License is distributed on an "AS IS" BASIS, 

   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 

   See the License for the specific language governing permissions and 

   limitations under the License. 

 

   Author: Dr. Oleg Trott <ot14@columbia.edu>,  

           The Olson Lab,  

           The Scripps Research Institute 

 

*/ 

 

#ifndef VINA_MUTATE_H 

#define VINA_MUTATE_H 

 

#include "pso.h" 

#include "model.h" 

#include "quasi_newton.h" 

 

// does not set model 

//void mutate_conf(output_type& c, const model& m, fl amplitude, rng& generator,pso*,const precalculate&,const 
igrid&,change&,const vec&,quasi_newton&,int); 

void mutate_conf(output_type& c, const model& m, fl amplitude, rng& generator,pso*,const precalculate&,const 
igrid&,change&,const vec&,quasi_newton&,int); 

 

void mutate_conf(conf& c, const model& m, fl amplitude, rng& generator); 

//void mutate_conf(output_type& cand, const model& m, fl amplitude, rng& generator, precalculate& p,igrid& ig,change& 
g,pso ps); 
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#endif 

10.3.5 monte_carlo.h 

/* 

 

   Copyright (c) 2006-2010, The Scripps Research Institute 

 

   Licensed under the Apache License, Version 2.0 (the "License"); 

   you may not use this file except in compliance with the License. 

   You may obtain a copy of the License at 

 

       http://www.apache.org/licenses/LICENSE-2.0 

 

   Unless required by applicable law or agreed to in writing, software 

   distributed under the License is distributed on an "AS IS" BASIS, 

   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 

   See the License for the specific language governing permissions and 

   limitations under the License. 

 

   Author: Dr. Oleg Trott <ot14@columbia.edu>,  

           The Olson Lab,  

           The Scripps Research Institute 

 

*/ 

 

#ifndef VINA_MONTE_CARLO_H 

#define VINA_MONTE_CARLO_H 

 

#include "ssd.h" 

#include "incrementable.h" 

#include "pso.h" 

 

struct monte_carlo { 
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 unsigned num_steps; 

 fl temperature; 

 vec hunt_cap; 

 fl min_rmsd; 

 sz num_saved_mins; 

 fl mutation_amplitude; 

 ssd ssd_par; 

 monte_carlo() : num_steps(2500), temperature(1.2), hunt_cap(10, 1.5, 10), min_rmsd(0.5), num_saved_mins(50), 
mutation_amplitude(2) {} // T = 600K, R = 2cal/(K*mol) -> temperature = RT = 1.2;  num_steps = 50*lig_atoms = 2500 

 

 output_type operator()(model& m, const precalculate& p, const igrid& ig, const precalculate& p_widened, const 
igrid& ig_widened, const vec& corner1, const vec& corner2, incrementable* increment_me, rng& generator) const; 

 output_type many_runs(model& m, const precalculate& p, const igrid& ig, const vec& corner1, const vec& corner2, 
sz num_runs, rng& generator) const; 

 

 void single_run(model& m, output_type& out, const precalculate& p, const igrid& ig, rng& generator) const; 

 // out is sorted 

 void operator()(model& m, output_container& out, const precalculate& p, const igrid& ig, const precalculate& 
p_widened, const igrid& ig_widened, const vec& corner1, const vec& corner2, incrementable* increment_me, rng& generator) 
const; 

 void many_runs(model& m, output_container& out, const precalculate& p, const igrid& ig, const vec& corner1, 
const vec& corner2, sz num_runs, rng& generator) const; 

 

}; 

 

#endif 

 

10.3.6 pso.h 

#ifndef PSO_H_ 

#define PSO_H_ 

 

#include "common.h" 

#include "conf.h" 

#include <vector> 
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class pso 

{  

public: 

 struct bird{ 

       vec velocity,vO;  /* current velocity */ 

        

       vec pbest_pos; 

       vec current_position; 

  

       qt pbest_orientation; /* particle the best position  */ 

       qt current_orientation; 

        

       fl* pbest_torsion; 

       fl* current_torsion; 

       fl* vT; 

        

        

       //double* pbest_fitForT; 

       double pbest_fit,tmp_fit;  /*particle personal best value*/ 

       //double pbest_fitForO;  

 }; 

  

 int torsionSize; 

 double w,c1,c2;  

 rng g; 

  

 int number;  

 vec corner1,corner2;  

 static vec gbest_position; 

 static qt gbest_orientation; 

 static fl* gbest_torsion; 

 static double gbest_fit; 
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 //static double gbest_fitForO; 

 //static double* gbest_fitForT; 

 std::vector<bird> particle; 

  

  

   double R1Max_; 

   double R1Min_; 

   double R2Max_; 

   double R2Min_; 

  

 

  

 pso(int,const vec,const vec,rng&,conf&); 

 void init(rng&,conf&); 

     

    /*Update Velocity for vector*/ 

    void updateVelocity(rng&,int); 

    void updateVelocityO(rng&,int); 

    void updateVelocityT(rng&,int,sz); 

     

     

    /*Compute the new pose*/ 

    void computeNewPositions(int); 

    //void computeNewOrientation(void(*)(qt&,const vec&),int); 

 void computeNewOrientation(int); 

 void computeNewTorsion(int,rng&,sz); 

     

     

    /*Update personal best value*/ 

 void updatePersonalBest(int,double); 

     

    /*Update global best value*/ 
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 void updateGlobalBest(int); 

     

    /*Get personal best value*/ 

 double getPersonalBest(int); //return the personal best value 

     

    /*Set personal best vector*/ 

    void updateBestPosition(int,vec); 

    void updateBestOrientation(int,qt); 

    void updateBestTorsion(int,fl,sz); 

     

    /*Set current vector*/ 

   // void setCurrentPosition(int,vec); 

 //void setCurrentOrientation(int,qt); 

 //void setCurrentTorsion(int,fl,sz); 

     

     

    /*Get current vector*/ 

 vec getCurrentPosition(int); 

    qt getCurrentOrientation(int); 

    fl getCurrentTorsion(int,sz); 

     

    /*Print out the birds information*/ 

 void print(); 

     

 

}; 

 

 

#endif /*PSO_H_*/ 


