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ABSTRACT

Autonomous vehicles belong to a class of systems whose dynamic characteristics are
independent of time. Due to their nonlinear dynamics, classical theories that deal with
linear systems are no longer applicable in the analysis or design The specific
autonomous vehicle considered in this work was an underactuated quadrotor with more
degrees of freedom than the number of actuations. At the same time, the quadrotor was
assumed to have an unknown mass and experience constant force disturbances. A
model-reference adaptive control strategy was designed with an observer and controller
to implement desired trajectory tracking behavior of the quadrotor. The overall stability
of the motion was guaranteed with a Kalman-Bucy filter for the design of the state
observer and Lyapunov-based backstepping techniques for the design of the adaptive

state feedback controller.
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Chapter 1 INTRODUCTION

Motion control of autonomous vehicles always leads to the control of a non-autonomous
system that interprets the corresponding error dynamics. Therefore, the study of the
stability of a motion is equivalent to the study of the stability around an equilibrium
point defined in the state space as explained in [1]. In some cases, the control of a
nonlinear system can be performed on its LTI (linear time-invariant) model which
guarantees local exponential stability, as indicated in results of linear system theory.
Such control law is easy to design. However, the performance of such a method can be
deteriorated when the system undergoes large deviations from the nominal point and
when system parameters suffer from changes with respect to time. Linear methods have
been applied in [2] and [3] but the vehicle system only represented closed loop stability
for small regions near the equilibrium point. Generally, direct method of Lyapunov
analysis works well on the stability of a nonlinear system but the difficulty is to find a
Lyapunov function with specific properties. Backstepping techniques are adopted to
guarantee the tracking error dynamics uniformly globally asymptotically stable.
However, the specific autonomous vehicle in this work is a quadrotor with four
propellers actuated in thrust and angular velocities. As a result, the number of actuations
are less than the total degrees of freedom, which is six for a quadrotor. Generally,
backstepping techniques are not applicable to this kind of underactuated systems.
However, as indicated in [4], a simplified model of a quadrotor is feedback linearizable,
and hence backstepping techniques can be used. For example, it has been adopted to

quadrotor trajectory tracking problem in [5].

Typically, a system is influenced by its surroundings and its internal changes in the
dynamic parameters, and hence should be observed either by external or internal sensors
for control purpose. However, full state observations are not always available. This
posed the necessity of state estimation from available states. Algorithms for state
estimation can be found in [6] with estimation law derived in the backstepping
procedures for constant external forces, and in [7] with estimation of multiple states

with extended Kalman-Bucy filter.



In practical cases, the control law designed should not contain unbounded terms or
singularities and hence bounds should be exerted on the control quantities either

automatically by the working limitations of a system or manually.

In this work, the specific autonomous vehicle is a quadrotor with four propellers
actuated in thrust and angular velocities with six degrees of freedoms. Its mass is
assumed to be a constant but is unknown. And a constant term accounts for the constant
force disturbance like constant wind and uncertainties in the model like uneven mass
distribution of the quadrotor. It is interesting to notice that the estimated quantities, both
the mass and the force disturbance can be suited in a linear time-varying system that
mimics exactly the behaviors of the nonlinear system through proper state
transformation. And Kalman-Bucy filter provides an easy and tunable solution for the
state estimation problem. The inputs of controller are expected to include the desired
trajectory, the estimation of mass and constant force disturbance, and other states from
a VICON Bonita motion capture system [8]. Bounds on the desired trajectory position
vector that is time-parameterized and its time derivatives should be exerted when
selecting the appropriate trajectory. And working limits of the quadrotor should be put
into consideration because there are cases when the vehicle is not able to achieve
calculated thrust and angular velocities. These constraints should be analyzed in terms
of stability of the controller. Generally, interconnection of two stable systems may not
lead to an overall stable system and hence the stability of the interconnection of the
stabilized Kalman-Bucy filter and the controller is of great importance for the overall

performance of the adaptive control system.

The structure of this paper is as followed: chapter 2 presents the required theorems and
mathematics background used in this work; chapter 3 deals with the modelling of the
dynamics of the vehicle and simulation of an open loop model; chapter 4 focuses on the
modeling of a state observer and corresponding simulations; chapter 5 presents the
modeling of a backstepping controller and corresponding simulations; chapter 6 studies
with the derivation of the interconnected system of the proposed observer and controller,
and corresponding simulations; chapter 7 deals with experimental results and
comparison with simulation results ;chapter 8 presents problems encountered and
possible solutions; chapter 9 is the conclusion; chapter 10 gives some recommendations

for future work.



Chapter 2 MATHEMATICAL PRELIMINARIES

2.1 NONLINEAR SYSTEMS AND EQUILIBRIUM POINTS

As explained in [9], a nonlinear dynamic system can usually be represented by nonlinear
differential equations as

x = f(x,t) (2.1)
where f isan n x 1 nonlinear vector function, and x isan n X 1 state vector. x(t)

is the system trajectory. Equilibrium points x*of such a system are defined to be

f&x*t) =0 vVt >ty (2.2)
In the special case of a linear time-varying system,
x = A(t)x (2.3)

a unique equilibrium point is at the origin. 0 unless A(t) is always singular.
Autonomous systems are systems that f does not depend explicitly on time such that
X (2.4)

is satisfied. Non-autonomous systems are hence those that are in the form of Eq. (2.1).
In the field of control, the above definitions have not included the controlling vector u,
whichisan m x 1 input vector.
For an autonomous system described in Eg. (2.4), when control variables are included,
the closed-loop dynamics becomes

X = f(x,u) (2.5)
and the overall dynamics may be either autonomous if u = u(x) or non-autonomous

if u=u(xt).

In practical problems, we are more concerned with stability of a motion rather than an
equilibrium point. The ability to follow the original motion trajectory if slightly
perturbed away from it. Let x*(t) be the solution of Eq. (2.4) corresponding to initial
condition x*(0) = x, and the perturbation x(0) = x, + 6x,. Then the variation of
the motion error is
e(t) =x(t) —x*(t) (2.6)
ée=f(x"+et)—f(x"t) =g(et) (2.7)
and the corresponding motion error dynamic system is a non-autonomous system.



2.2 STABILITY OF DYNAMIC SYSTEMS

2.2.1 Local Stability and Local Uniform Stability

As explained in [9], the equilibrium point 0 is stable at t, if VR >0, 3r(R,ty) >
0 such that

IX()ll <7(R, to) = XD <R Vt=t, (2.8)
Otherwise, the equilibrium point 0 is unstable.
The equilibrium point 0 is locally uniformly stable if the scalar r in Eq. (2.8) can be

chosen independently of ¢,.

2.2.2 Local Asymptotic Stability and Local Uniform Asymptotic Stability

As explained in [9], the equilibrium point 0 is locally asymptotically stable at t, if it
is stable, and 3 r(t,) > 0 such that

Xl <7(te) = IIx(®I >0 as t - (2.9)
The equilibrium point 0 is locally uniformly asymptotically stable if it is uniformly

stable, and 3 Bg, a ball of attraction whose radius is independent of t,, such that v

system trajectory with initial states in Bg, converges to 0 uniformly in ¢,.

2.2.3 Exponential Stability

As explained in [9], the equilibrium point 0 is exponentially stable if 3 a,4 > 0,

such that for some ball B, ,

X1l < allx(to)lle™ ) vi=0 (2.10)

2.2.4 Local Stability and Global Stability

As explained in [9], local stability implies that values of r in Eq. (2.8) and (2.9) is not
arbitrarily chosen, global stability implies that values of r in Eq. (2.8) and (2.9) can be

arbitrarily chosen in the set of positive real number.

2.2.5 Input-to-state Stability

From [10], a nonlinear system in Eq. (2.5) is said to be locally input-to-state stable if
there exist a class KL function g, a class K function y, and positive constants k,
and k, such that for any initial state x(t,) with ||x(t,)|| < k; and any input u(t)

with supgs; [lu(t)]l < k,, the solution exists and satisfies



Ix(O1l < BUIx(E)II t —to) + V( sup IIu(T)II> (2.11)

to<T<t
forall t >t,>0.Let D={x€R"|x|| <r}, D, ={ueR™ |u| <r} Itis said
to be input-to-state stable if D = R", D,, = R™, and inequality is satisfied for any initial
state x(t,) and any bounded input u(t).
Stability of perturbed systems can be proved under certain constraints. Let D =
{xeR|[x]|<r}, D, ={u€R™ ||ull| <nr}, and f:[0,00) X D x D,, > R™ be
piecewise continuous in t and locally Lipschitzin u and. Let V:[0,0) X D = R be
a continuously differentiable function such that
ai (IxI) < V(&%) < ay(lIxl) (2.12)
L+ (e xu) < —as(IxI) VIl = p(llul) = 0 (2.13)
V(t,x,u) € [0,00) X D' X D,, where a;,a, and as are class J functions. Then,
the system described in Eq. (2.5) is locally input-to-state stable with y = ay1°a,°p,
ki = a;*(a; (1)), and k, = p(min{ky, p(r,)}). Moreover, if D = R", D, = R™, and
a, is a class ¥, function, then the system in Eq. (2.5) is input-to-state stable

withy = a7t°a,°p.
2.3 LYAPUNOV’S DIRECT METHOD FOR NON-AUTONOMOUS SYSTEMS

2.3.1 Locally Positive Definite Lyapunov Function

As explained in [9], a scalar time-varying function V(x,t) is locally positive definite
if V(0,¢t) =0 and 3 a time-invariant positive definite function V,(x) ina ball B
such that

Vx,t)=V,(x) Vt=0 (2.14)
Globally positive definite functions can be defined similarly for x to be arbitrarily

chosen in R™1 other than 0.

2.3.2 Decrescent Function

As explained in [9], a scalar time-varying function V(x,t) is decrescent if V(0,t) =
0 and 3 atime-invariant positive definite function V;(x) inaball Bk such that

Vx,t)<V(x) Vt=0 (2.15)



2.3.3 Lyapunov Theorem for Non-Autonomous Systems
2.3.3.1 Lyapunov Local Stability

As explained in [9], if, in a ball Bg_ around the equilibrium point 0, 3 a scalar
function V(x,t) with continuous partial derivatives with respect to x such that
V(x,t) is positive definite, and V(x,t) is negative semi-definite, then the equilibrium

point O is locally stable in the sense of Lyapunov.

2.3.3.2 Lyapunov Local Uniform Stability and Local Uniformly Asymptotic
Stability

As explained in [9], if the equilibrium point O is locally stable in the sense of Lyapunov,
and V(x,t) is decrescent, then the equilibrium point 0 is locally uniformly stable.

If, in a ball By around the equilibrium point 0, 3 a scalar function V(x,t) with
continuous partial derivatives with respect to x such that V(x,t) is positive definite
and decrescent, and V(x,t) is negative definite, then the equilibrium point 0 is locally

uniformly asymptotically stable.

2.3.3.3 Lyapunov Global Uniform Asymptotic Stability

As explained in [9], if 3 ascalar function V(x,t) with continuous partial derivatives
with respect to x such that V(x,t) is positive definite and decrescent, and V(x,t) is
negative definite, and V(x,t) is radially unbounded, then the equilibrium point 0 is

globally uniformly asymptotically stable.

2.4 OBSERVABILITY AND OBSERVER DESIGN THROUGH STATE AND
OUTPUT TRANSFORMATION

2.4.1 Observability for Nonlinear Systems

As discussed in [11], given a nonlinear, non-autonomous dynamic system

O = fExOu)
y(®) = h(t,x(®),u(®))’ X(to) = X

where x(t) € R™!, u(t) € R™, y(t) € R%*!. The system is observable on [t tf]

(2.16)

for a given u : [to,t] » R™! if and only if for that input u(t) the initial state

x(tg) = X, isuniquely determined by the response y(t) of the systemfor t € [to, tf].



The nonlinear system is observable if and only if it is observable for ¥ u(t) : [to, tf] —»

RnXl

2.4.2 Linear Mimicking Systems

If 3 T, : R™' > RP*! v(t) and T, : RO** - RT*! with T,(x,) = w, and

v(t) =u(t) for Vt € [ty tr] such that

w(t) = T, (x(1))
{z(t) = T,(y(®) (@17)
holds for V t € [ty, t¢], then the system
w(t) = A(t,u(t), y())w(t) + B(t,u(t), y(t))v(t)
z(t) = C(t,u(d), y(t))w(t) (2.18)

w(tp) = wy

is mimicking the dynamics of the nonlinear system described in Eq. (2.13).

2.4.3 Observability Equivalence

If the nonlinear system described in Eq. (2.13) with a given input u(t) : [to, tf] —

R™*1 and

(1)3 T, : R > RP*! and T, : R%*' - R?*! such that the linear time-varying
system described in Eg. (2.15) mimics the dynamics of the nonlinear system;

(2) For Vy(t) : [to, tr] = R%*!, the resulting linear time-varying system is observable
on [to, trl;

(3) The state transformation T, is injective.

Then, the nonlinear system is observable on [t,, t¢] for the given u(t).

2.4.4 Stability Equivalence

Define Ty : RP*1 - R™! that satisfies Ty(T,(x)) = x for v x € R™. The above
equivalence of the observability between the nonlinear system and the linear time-
varying mimicking system can guarantee the observability that initial state w(t,) =
w, is uniquely determined by the response z(t) of the system for t € [to,t] but
cannot guarantee the observation convergence of the state x(t) through the inverse
transformation T, (w(t)). However, if 3 a > 0 such that

1Ty (Wa) — T (W)l < allwg — wyl (2.19)



holds for v w,,w, € RP*1, and assume there 3 a state observer with globally
exponential stable error dynamics, then the estimated state X(t) converges
exponentially fast to the state x(t).

A special situation is when the state transformation is selected as

X
T (x®) = 1, (x(0)| (2:20)
where T, : R™! —» RP~™*1 and this state transformation is injective and satisfied

the inequality specified in Eq. (2.16).

2.4.5 Observability of Linear Systems

Linear dynamic systems are special cases of nonlinear dynamic systems in the form of

w(t) = A(t)w(t) + B(t)v(t)
z(t) = C(H)w(t) (2.21)
w(tp) = wy

w(t) € RP*1 y(t) € R™1, z(t) € R?7* thenthe linear state Eq. (2.18) is observable
on [to, tr] ifandonlyifthe n Xn matrix
M(to, t7) = fttof DT (t,t,)CT(t)C(O)D(t, ty)dt (2.22)

is invertible, as proved in [12].

2.4.6 Stability of State Observer

If the linear time-varying system specified in Eqg. (2.18) is uniformly complete
observable, then the Kalman-Bucy filter used in the design of a state observer is globally
exponentially stable [13] and [14], which requires that given t,, for Vv AT > 0,

M(to, to + AT) - ftZO+AT

DT (t,t)CT ()C()P(t,ty)dt (2.23)

is invertible.
2.5 IMPORTANT INEQUALITIES

2.5.1 Young’s inequality

As explained in [9], a special case of Young’s inequality is:

£b?

ab < (2.24)
2& 2

where a,b > 0, and ¢ is any positive constant.



2.5.2 Gronwall-Bellman inequality

As explained in [9], suppose that ¢(t) and v(t) are continuous functions defined for
t>t, with v(t) =0 for t > t,, and suppose W is a constant. Then the implicit
inequality

G(O) W+ [ v(@) p(o)do,  t2tq (2.25)

implies the explicit inequality

t
b(t) < WelV P4 >y (2.26)



Chapter 3 VEHICLE MODEL

3.1 PHYSICAL MODEL

Figure 1. Quadrotor platform

The mini quadrotor is shown in figure 1. The quadrotor has four propellers located at
each end of the four extended arms and they are driven by four motors that provides
different rotating speeds. Results in fluid dynamics suggest that the air undergoes
pressure change from above the propellers to the beneath of them and hence the
propellers are acted with air dynamic forces that maintain the overall stable motion of
the quadrotor. The central controlling unit is located at the center of the quadrotor along
with batteries. The mass of the total system is usually known by measurement in
advance. It is also observed that the quadrotor represents geometric symmetry with

respect to its center. Hence, inertia quantities of it can be simplified and measured.

However, uneven mass distribution of the quadrotor, like the one in figure 1 caused by
the asymmetric part of an undercarriage, can be observed. And the thrust produced by
the propellers is not ideally perpendicular with respect to the surface of the propellers
due to the complicated air dynamics in the surroundings of the quadrotor. These
imperfections lead to the following problems:

(1) the inertia matrix is not diagonal;

(2) the thrust force can have different orientations during a motion.

10



3.2 SIMPLIFICATION OF THE PHYSICAL MODEL

The two problems addressed above show imperfections of the physical model when
mathematical model is desired for calculations. The following assumptions are based
on empirical observations:

(1) The center of mass is located on the center of the quadrotor;

(2) The inertia matrix is diagonal with respect to the center of mass;

(3) The force produced by propellers are perpendicular to the surface of the propellers

and thus the total thrust can be seen acting on the center of mass.

Figure 2. Quadrotor setup
3.3 MATHEMATICAL MODEL

The quadrotor was modeled as a rigid body with a body frame {B} attached to the
center of the quadrotor with its z-axis perpendicular the surface of the four propellers.
Forces produced by the four propellers were equivalent to a single thrust acting on the
center of mass along the z-axis in the body frame. The gravity vector was along the

negative z-axis in the Earth frame {E}, which is a fixed inertia frame.

Denote the linear position of the center of mass as “P € R3* with respect to {E},
and 5P € R®*1 with respect to {B}, the rotational matrix ZR € SO(3) that satisfied
EP = EPBORG + ERBP (31)
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Then the linear velocity of the center of mass ®V € R3*! with respect to {B} can be

defined as:

B FrEq E B (Eq E Bp Ep

Denote the angular velocity in {B} as®w € R3*!, The rotational matrix ZR was an

orthonormal one which had the property

ER = ERS(Pw) (3.3)
where S(+) yielded a skew symmetric matrix that verifies
S(X)y =xXy X,y € R3*1 (3.4)
Denote the thrust as 5T = 5Te; € R®*1, Eb e R®', £G =mge; € R>! with
0
e; = |0|. The net force acting on the quadrotor was
1
FF = —ERBT + mge; + b (3.5)
BF = — BT + mgERe; + ER b (3.6)
According to Newton’s Law of motion:
EF =mFPp (3.7)
EF = m=- (§RFV) (3.8)
EF = m(ER®V + ER BV) (3.9)
EF = m[ERS(Pw) BV + ER V] (3.10)
BREF =m(Pw x BV + PV) (3.11)
BF = m(Pw x BV + BV) (3.12)
mBPv=-mBw x BV + BF (3.13)
PV = —S("w) "V +— °F (3.14)
replacing by ZF by specific forces in Eq. (3.5)
PV = —S(°w) °V + = (= °T + mgfRe; + fR °b) (3.15)
PV = —S(°w) "V — = "T + gfRe; + —ER b (3.16)

Denote ZI € R3*3 to be the inertia matrix, and Euler’s equation related angular
velocity Zw with ZI and the torque ®n € R3*! as followed

Br= B+ Bw x (°I Bx w) (3.17)

Bop = —PI71S(Pw) P1 Pw + B171 Pn (3.18)

Summing up equations through (3.1) to (3.17)

12



ER = ERS(Pw)

EP — ERBV
. 3.19
PV = —S("w) "V —— °T + giRe; + - IR b (319)
' Be=-"1"1(P0w) 15w + 1" n

In this work, the specific quadrotor was actuated in thrust 2T and angular velocity
Bw. Meanwnhile, Eq. (3.19) could be simplified by the input transform ®n = 818t +
S(®w) P1®w, given that the control in angular velocity % was available.

( s ERSCw)

. 3.20
PV = —S("w) "V ——"T + gfRe; + R b (3.20)

B(b: Bt

Then, transforming the Eq. (3.20) into the form of Eg. (2.13), one can get

{X(t) = f(x(t),u(t))

y(t) = h(x(®), u(®))’ x(ty) =Xo (3.21)

g Br
where x(t) = fFP € R®' | u(t) = [3 l € R®1 or u(t) = lB l € R, y(b) =
w T

x(t) € R x, = EP(t,) € R,
3.4 MODEL WITH OPEN LOOP DESIGN AND FULL STATE OBSERVATION

The model in Matlab/Simulink environment was built as shown in the following

figure:

w w_B

tau fau -
angular velocity

actuation in angular velocity

=

V_B

linear velocity

o,
P » PE

actuation in thrust

£

linear position

quadrotor

Figure 3. Open loop model

The open loop model was constructed with the Eq. (3.20) that described the overall
dynamics of the quadrotor. The nonlinear behavior of the dynamics triggered the use of
function block in Simulink, which allowed convenient coding and better visualization

of the model.
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The mass of the quadrotor was assumed to be known at this stage, with m = 0.206 Kg.

And the gravity was set to the local gravity near the ground of g = 9.7877 m/s? [15].

0 0.1
0 0.1
1 0.1

The actuation quantities were setto 5T = Newton, 5t = rad/s?, ER(t,) =

1 0 0
0 1 0| and Eb=
0 0 1

0.3
0.2
0.1

0
Newton. And the initial conditions were BV (t,) = [0]
0

0
mis, EP(t,) = [ 0
-1

m. The simulation result was shown in the following figure:

Figure 4. Simulation of open loop model

The visualization of quadrotor in figure 4 specified the top surface of the quadrotor with
white color, the bottom surface as black (not visible in the figure 4), and four propellers
were simplified with four outstretched arms colored with light blue and light pink.

The simulation result met the expectation with the given input, where the quadrotor was
gradually lifted at the beginning of the motion due to a bigger thrust than gravitational
force. And it was rotated clockwise around each axes of the body frame.
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Chapter 4 OBSERVER DESIGN

This section dealt with the situation when full state observation was not available and
thus should be observed through the use of an observer. As stated in the Chapter 2, the
observer used in the work was one with Kalman-Bucy filter. This required a
corresponding LTV (linear time-varying) dynamic system to be observed. The first part
of this section simplified the observation problem by ignoring the external force
disturbances. The second part of the section checked and transformed the nonlinear
dynamic system described in Eqg. (3.20) into a linear time varying system that mimicked

exacted the behavior of the nonlinear dynamic system.

4.1 OBSERVER DESIGN WITH UNKNOWN MASS BUT NO EXTERNAL
FORCE DISTURBANCE

As atrial, the mass of the quadrotor m was unknown and the external force disturbance
Eb was assumed to be zero. Then the Eq. (3.20) became
( R = ERS("w)
| Ep = ER PV
PV = —S("w) "V~ =~ PT + gfRe,

B(b_—_ BT

(4.1)

Naturally, an additional state m should be added in the above equation but the resulting

system was nonlinear in state variables. Notice that — was linear with state variables,

one can get
By B
v 0 by VI [-s(Pw)®V + gERTe,
B o :[ 3x6 Bl + By (4.2)
i(l) 04-><6 04-><1 (i) 0
dt “m m

B
: : \' . :
Define a state variable x(t) = lB l € R®*1, Assume that the linear velocity and the
)
angular velocity can be observed (angular velocity equaled to the controlling variable
B
: \' .
B1), then an output variable y(t) = [B l € R®*1 can be defined. Hence the Eq. (4.2)
w

became
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—S(Pw) P’V + gER"e,
[ l om — ] [ ] .
a G Oaxs O4x1l 1G) OT (4.3)
y(t) = Igx(t)
Consider the state and output transformation described in Eq. (2.17) and (2.14), define

the two transformations as

x(t)

T(x(©) = [(i) (4.4)
T, (y(1)) = Iy (®)

and let new state variables w(t) = T,(x(¢t)) and z(t) = T,(y(t)). The overall

system now has the dynamics in the form like that of Eq. (2.18).

( 0 — BT] —S(Pw) PV + gER"e,
wo=| 0xe 03411|W+ By
016 0 0
{ Z=[lg Ogx1]W (4.5)
BV (ty)
w(ty) = Bo(ty)
\ 0

B
- T
Define A(t) = lOGXG [03><1] , C(t) = [Ig 0gx1]. To guarantee the nonlinear system
01x6 0

described in Eq. (4.1) was observable, one should check the observability of the

resulting linear time-varying system described in Eq. (4.5) on time interval [to, t¢] by
calculating the observability matrix defined in Eq. (2.19). Note that the transition matrix

t t
q)(t, to) =1+ ftof A(Ul) dGl + ftof A(Ul) f:; A(Gz) d02d01 +

ftzf A(0y) fgg; A(o,) f;; A(03) dosdo,doy+ -, Then

[ ftf Bt dal
t
d(t, t,) =1+ ftof A(o) do = 03><1 (4.6)
016
M(to, tr) = ;7 @7 (¢, t) CT()C(ID(t, to)dt (4.7)
16 B
_(tf —[7 ®Tdo
M(to, tf) = fto [[— f;f BTT do les]l ls l 0 l “ “9
tf B
- Td
Denote Kgyq = l fto 0], one can get
O3><1
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[ Ig Kex1

dt 4.9
Kre Ky (49)

M(to, tr) =
which satisfied M7 (t,,tr) = M(t,, t;), now introduce a unit vector g € R”**, and
consider the quadratic form

Q =q"M(to, tr)a (4.9)
Q was positive definite if and only if all the principal minors were non-singular. Thus,

if Q was positive definite, then M(to, tf) was invertible. Expand the expression (4.9)

P I | N
Q=9q" tof [KT6 ] [l Kex1]1dt q (4.10)
ftf q’ [ T6 ] [l Kex1]1qdt (4.11)
1x6

The induced norm of the matrix K € R™™ was defined as
K[| £ max|[Kq|| 3q € R™ |lqll =1 (4.12)
Hence, let the @ be such that the induced norm of a matrix is defined. Then the

quadratic form can be written as

Q = J7Il[ls KexallI2dt (4.13)
Q = J,71l[le Koxalali*de (4.14)

If M(¢o,tr) was not invertible, then Q = 0, and
[0 Kexalall*de = 0 (4.15)
Il Kex1lqll =0 (4.16)

Let q [ ] then
q: + Kex192 =0 (4.17)
a+ [_ Jy T d"] 4:=0 (4.18)
3x1

Setting t; = ty, then q4 = 0. Hence

tf B
lf . Td“l =0 (4.19)
3x1
[ PTdog, =0 (4.20)
ffof ’T doq, =0 (4.21)

Thus, if no g, € R\{0} can be found that satisfies the condition in Eq. (4.21), the

observability matrix M(¢o,t;) was invertible. This implied that The M(t,,t;) was
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invertible if and only if T did not always equal to 0 on [to, ¢/]. Also, if T did not
always equal to 0, then given t,, for ¥ AT > 0, M(t,,t, + AT) was invertible. The
physical meaning of the argument was that the thrust cannot be zero during the whole

time interval.

In all, the linear time-varying mimicking system was observable and the nonlinear
system was observable with global stability with Kalman-Bucy filter under the

condition that ®T was not always 0 on [t,, tr]. Observation noise and state noise

were assumed to be white noises.

The linear time-varying model and the observer were constructed in Simulink

environment. The same input quantities were applied to the linear time-varying model

0 0.1 1 0 O
with BT = [0| Newtonand %t = |0.1| rad/s?, 2R(t,) =0 1 0[. Andthe initial
2 0.1 0-0 1
conditions that served as guesses to the unknown states in the observer were
R 2 2
BV(to) = |2| mis, Mi(t,) = 0.22 kg, and Z&(t,) = [2| rad/s.
2 2
|:]_— —r: R R
W

wesd west
quadrolor

v
=

Figure 5. LTV model and observer model

The observer received signal from the available measurements of the state, which were
By and Bw, as well as the control input T and Zt. Then, the observer outputted

the estimated states that involved not only 2V and Zw, but also the mass m.
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Error for Velocity in B when Q=0.01eye(7) & R=0.01eye(6)

Error for VBX
(7]
E oFr — " Error for VBy
-5 | | | 1 1 1 1 Error for VBZ
0 5 10 15 20 25 30 35 40 45 50
time/s
) | | Errlor for IAnguI?r VeIoIC|ty |n| B Error forw,_
% ! _\\ Error for wBy
ol ~— Error forw,
0 1 1 - [ I i —p—— M —— ]
0 5 10 15 20 25 30 35 40 45 50
time/s
Error for Mass
0.05 T T T T T T T
g of
_0-05 1 1 » | 1 1 1 1 |
0 5 10 15 20 25 30 35 40 45 50

time/s

Figure 6. Simulation result of open loop system with observer

As shown in figure 6, all of the error for the estimated states converged to zero in less
than seconds. For the Kalman-Bucy filter that returned the optimal feedback gain, two
covariance matrices were defined in advance that reflected the system behavior of
whether more noise existed in the dynamics of the system or in the observation. Effects

were shown in the following figures.

Error for Mass

0.025 T T T T o T T T T
—R/Q=10
— R/Q=100
0.02 R/Q=500 | -
0.015 1
2 o.01 il
0.005 1
0 e et e e e e o T e R i T
_0.005 1 1 1 1 1 1 1 1 1

0 5 10 15 20 25 30 35 40 45 50
time/s

Figure 7. Simulation result of different relative noises level
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The above figure showed that relative higher noise level in the observation than that in
the state led to slower convergence rate of the error dynamics, which can be explained
with the implementation of the Kalman-Bucy filter. With the LTV model

(W=Aw + Bu +p

| z=cw+q
PV(to) (4.22)
lW(tO) = [ B (ty)
0
0 [_ BT] —S(Pw) PV + gER"e,
where A(t) = [ °*® [0344]| . B®u@® = By . C) =
01x6 0 0

[l  Ogx1l, W(to)~N(wo, P(to) > 0), p(~N(0,Q(t) > 0), q()~N(0,R(¢) > 0).

Time dependence (t) was omitted for convenience. Then the Kalman-Bucy filter was

W(tg)~N (wo, P(t0))
P = AP+ PA”T + Q — PC"R™'CP
k K=PCT'R™?
As can be inferred from the above equation, a bigger value of R would result in a

W = AW + Bu + K(z — Cw)
(4.23)

smaller inverse R™! and the optimal Kalman-Bucy gain K(t) would be smaller in the
sense that the convergence rate would be slower. Hence, the characteristics of the

Kalman-Bucy filter provided a convenient way of tuning the convergence rate.

4.2 OBSERVER DESIGN WITH BOTH UNKNOWN MASS AND EXTERNAL
FORCE DISTURBANCE

In previous part, observation of the full state variables was proved and simulated to be
successful. However, the angular velocity was just the integral of the input torque signal.
Thus, estimation of the angular velocity was unnecessary and should be eliminated from
the observer. Then the Eq. (3.20) became

( FR = ERS(Pw)
EP — ERBV
. 4.24
IBV=—S(Bw)BV—iBT+g§Re3+$§REb (424)
k Bo = 1

E
Notice that % and Fbwas linear with state variables, one can get
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By B
\" \"
[ 1 03,3 —5T ERT |r L ]| —S(Pw) PV + gER"e,
at (;) =10 0 0.s|| G+ 0 (4.25)
03)(3 03)(1 03)(3 i 03><1
dt (m) (m)
Define a state variable x(t) = 5V € R3* and an output variable y(t) = ?V € R3*!

can be defined. Hence the Eq. (4.25) became

X
IOSXS - ERT (l) _S( B(l)) BV + ggRTeg
dt m = 01><3 01)(3 ;n + 0 4.26
(—)J 0353 03><1 0353 (—b) 031 (4.26)
dt m m

y(®) = I3x(¢)
Consider the state and output transformation described in Eq. (2.17) and (2.14), define
the two transformations as
( rx(t>1
T(x(0) = l (4.27)
(—)
T, (y(1) = Ly (®)
and let new state variables w(t) = T,(x(¢)) and z(t) = T,(y(t)). The overall
system now has the dynamics in the form like that of Eq. (2.18).

( 03x3 ‘ol PERT —S(Pw) PV + gERTe,q

W=104x3 0 0y 3|WH 0
03x3 03451 0353 0351
< z=[I3 03y O33]W (4.28)
BV(ty)
w(ty) = 0
\ 0
E
0353 —'T R’

Define A(¢t) = , C(t)=[I3 0351 O034x3]. To guarantee the

01x3 0  O4x3
03x3 03x1 O3x3

nonlinear system described in Eq. (4.24) was observable, one should check the

observability of the resulting linear time-varying system described in Eq. (4.28) on time
interval [t,, tr] by calculating the observability matrix defined in Eq. (2.19). Note that

the transition matrix ®(t, t,) =1+ f;f A(o,) doq + fthA(al) f:zlA(aZ) doydo, +

ftzf A(oy) f:zl A(o,) f: A(03) dosdo,doy + -+, Then
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I; —ftzf BT do ftzngTda

t
d(t, ty) =1+ ftOfA(a) do = 01x3 1 0153 (4.29)
03)(3 03)(1 I3
t
M(to, tr) = ftof ®T(t,t,)CT(H)C()P(, t,)dt (4.30)
¢ I
M(to, tf) = ftof [Krixg] [13 K3x4ldt (4.31)
where Kz, = [— ftzf BT do f;f ERT da], and one can get
I K
_ (tf 3 3x4
M(to, tr) = I, [KTM KTMKN] dt (4.32)

which satisfied M7 (t,,tr) = M(t,, t;), now introduce a unit vector g € R7**, and
consider the quadratic form

Q =G "M(¢to.tr)d (4.33)
Q was positive definite if and only if all the principal minors were non-singular. Thus,

if Q was positive definite, then M(to, tf) was invertible. Expand the expression (4.9)

I
Q=9q" ttf[ r ] [I3 K3x4]dt q (4.34)
o 1K 43
Lo I .
Q= [T a [’ |1 Kslaae (4.35)
4x3

The induced norm of the matrix K € R™*™ was defined as
K|l £ max|Kq|l 3q€R™, (lql=1  (4.36)
Hence, let the @ be such that the induced norm of a matrix is defined. Then the

quadratic form can be written as

Q = [,/ Ilis KsyalllPdt (4.37)
Q = [,/ 113 Ks,aJdl1%de (4.38)
If M(¢o,t;) was not invertible, then Q = 0, and

175 Ksal@li2de = 0 (4.39)
13 K3x4]qll = 0 (4.40)

Let g = [gﬂ where q; € R3*! and q, € R**1 then
q: +K3x4q2 =0 (4.41)
q+[-J) "Tdo [7ER"do|q, =0 (4.42)

Setting t; = ty, then q4 = 0. Hence
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|- [ PTdo [ ER"do|g, =0 (4.43)

421 0
Let  q=|2| . PT=[0]| . and fR=Ry(@Ry(ARx(Y) =
T
24

sacf sasPsy + cacy sasfcy — casy
—sp cBsy cBey
yaw angles, respectively. c(-) denoted the cosine of an angle, while s(-) denoted the

casf casfsy —sacy casfcy + sasy
[ , Where «a, B, y denoted roll, pitch, and

sine of an angle. Rewriting Eq. (4.43), one can get
0 casf sacp —sp1[?2t
0 casfsy —sacy sasfsy + cacy C,Bsy] 122
- 5T casfcy + sasy —sasfcy —casy cPcy Z;i

Taking time derivative of both sides of Eq. (4.44), one can get

t
I

0

do =0 (4.44)

q22casP + qzzsach + g4 (—sp) =0
qz2(caspsy — sacy) + qqz(saspsy + cacy) + qzacfsy =0 (4.45)
~Q21 "T+ oz (casBey + sasy) + qs(sasfey — casy) + qaacBey = 0
Thus, if no g, € R*\{0} can be found that satisfies the condition in Eq. (4.45), the
observability. matrix M(t,,tr) was invertible. This implied that M(¢o,tf) was
invertible if and only if the following three sets of functions were linearly independent

on [to, tr]:

{casp, sacf, —sB} (4.46a)
{casfsy — sacy, sasfsy + cacy, cfsy} (4.46Db)
{—= BT, casBcy + sasy, sasfcy — casy, cfcy} (4.46¢)

Using the same conditions as those of last section for 5T, ®t, ER(t,), and ‘b =

0.3
0.2
0.1

Newton. Initial guesses of the initial linear velocity was using the same as that of

0
0
0

filter parameters were setas Q = 0.011,, R = 0.01I5, and the initial covariance matrix

last section for BV(t,), mi(t,) = 0.14 kg, and Eb(t,) = Newton. The Kalman

P(t,) = I,.The simulation results gave
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Error for Velocity in B when Q=0.01eye(7) & R=0.01eve(3)

' ' ' ' ' ' ' ! Error for V
—_ Bx
% ) e —— Error for VBy

~ Error for V
_50 1 1 1 1 1 1 1 1 Bz

0 5 10 15 20 25 30 35 40 45 50

time/s
0 Error for Mass
Error for m
2 -005F .
_0-1 1 1 1 1 1 1 1 1 1

0 5 10 15 20 25 30 35 40 45 50
time/s

] Error for External Disturbance in E
T T T T T T T T

Error for bEx

Error for b
Ey

Error for bEz

_1 1 1 1 1 1 1 1 I

0 5 10 15 20 25 30 35 40 45 50
time/s

Figure 8. Simulation result of open loop system with observer

Thus, as long as the actuations 2T and Bt were not constant on [t,, tr] and they
were sufficiently rich, then the linear time-varying system was observable and the

unknown system parameters like b and m could be recovered.

Apart from the above simulation, a special case involving the above three sets of
equations was explored to explore the linear independence requirements specified in Eq.
(4.46).

EXAMPLE 1 — Effects of a constant rotational matrix on the performance of the
observer

The setting was equivalent to the limitation that¢ = 0, =0,y = 0,and «a # % B+

%, Yy # g Then, a constant unit vector associated with the three sets of Eq. (4.46) could

be easily found to be
0
0

—cBey
sasfcy — casy

qz = € R*\{0} (4.47)
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Although no conclusion could be made theoretically to prove the observability of the
nonlinear system described in Eq. (4.24), the stability of the estimator system was still
ensured. Moreover, the estimated values of the states converged to constants, though
are not guaranteed to converge to the correct parameters. The corresponding simulation

results were shown in the following figure:

Error for Velocity in B when Q=0.01eye(7) & R=0.01eye(3)

R Error for VBX
% 0 Error for VBy
= .50 , , , , , , , Error for VBZ
0 5 10 15 20 25 30 35 40 45 50
time/s
Error for Mass
-0.04 T T x = x T T I I
Error for m
2-005¢
-0.06 : : : e : : : :
0 5 10 15 20 25 30 35 40 45 50
time/s
Error for External Disturbance in E
G —— ‘ : — : : — Error forb,_
% -05¢F —— Error for bEy
1 1 1 1 , N 1 1 Errorforb_,
0 5 10 15 20 25 30 35 40 45 50
time/s

Figure 9. Simulation result of open loop system with observer and constant 2R

0 [0]
Note that the conditions for the system should be setas T = |0| Newton, 5t = |0
2 [0
0 R [2]
rad/s?, Bw(t,) = [0| rad/s. Initial guesses of the unknown parameters 2V (t,) = |2
0 2]

A 0

m/s, m = 0.02 kg, b = |0| Newton.
0

As shown in figure 9, the estimation of both the mass of the quadrotor and the external
force disturbance it experienced did not converge to the correct values. However, the

convergence property still held for the observer system.
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Chapter 5 CONTROLLER DESIGN

So far, full information about the states was known at the output of the designed
observer in the last chapter. Controlling algorithm design and analysis were addressed
in this chapter. Specifically, the controller should guarantee the convergence of

positional error while enabling the quadrotor to follow certain predefined trajectories.
5.1 NONLINEAR BACKSTEPPING

Standard backstepping technique was adopted in developing a tunable controlling
algorithm. The new dynamics was described in the following equation, equivalent to
Eq. (4.24):

( FR = ERS(Pw)

J Fp = ER Py

| PV = —S(P0) °V = — T + glRe; + IR "b 61)
k Bay = By

Let EP4(t) beabounded desired trajectory whose time derivatives were also bounded.

The trajectory tracking problem now became the problem of designing the controlling

0 1,(6)
inputs BT(t) = i 0( ) and Br(t) = | ®r,(t)| such that made the error dynamics
T(t B
7,(t)

of the position error z;(t):= “P(t) — FP4(t) converge to zero as time t went from
0 to o. The backstepping procedures were stated as followed (time dependence and
reference frames attached to each variable was omitted to suppress expressions).
Define the positional error
z.:=P—Py (5.2)

and a corresponding Lyapunov function can be chosen as

V= %zle (5.3)
Referring to section 2.3, this particular kind of Lyapunov function had some preferred
properties if no constraints were exerted on z,. Firstly, V; had continuous partial

T
- - - - o1 _ 2071) 2 071 _ T T
derivatives with respect to z,, i.e. 2. 2 oz, L +t52 92, — L where z; was

continuous as long as both P and P4 were continuous. Secondly, V; was positive

definite, i.e. V;:= %zle = %Izll2 > 0. Thirdly, V; was radially unbounded provided
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that no constraints like bounded conditions were exerted on z,. Now, it was desired
that the Lyapunov function V; had negative time derivative, so that certain kind of
stability could be concluded with respect to the positional error z;. The time derivative

of V; was calculated to be:

. 1. 1 . .
v, = Ezle +Ezfz1 =1zl (5.4)
where z; = RV — Py, thus:
V; =z (RV — Py) = —k2{z, + z{R[V + RT (=P, + k;2,)] (5.5)

where k; was a positive real constant. The initiative now was to make V; negative
with respect to time so that certain kind of stability can be concluded. Note that the
quadrotor in discussion was an underactuated one in the sense that the number of
degrees of freedom (which was 6) was larger than the number of actuation (which was
4). Thus, it was impossible for the quadrotor to follow exactly the predefined trajectory
and the dynamics that went along with the trajectory. According the reasoning in [16],

instead of driving the quantity V + RT(=P4 + k;z,) to zero, let:
z;:=V+RT(=Pq + kyz,) — 8 (5.6)

Ox
where 8 = lcsy‘ was a constant vector with real number coordinates. Backstepping for
o

the error z, gave:
V=V, + %Z;FZZ (5.7)
V, =V, +zlz, (5.8)
where 2, =V + RT(—Py+ kyz;) + RT(—Pg + ki2,) = —SV + gR"e; + —RTb -
—T — SRT(—Py + kyz,) + RT(—Bg + ky21) = —SV + gR"e; + —RTb —— T —
S(z, + 8 — V) + R" (=P + k1) = —S(z; + 8) + gRTe; + —R™b ——T +
RT(—Py + k,2,), as derived from Eg. (5.1) and Eq. (5.6). Thus:
Vy, = —k 27z, + zZTR[V + RT(=Py4 + k z,)] + 2] %, (5.9)
= —k,z]z; + zTR(z, + 8) + 2] 7,
= —k,z1z, — k,21z, + 2ZTR(z, + 8) + Z) 7, + k2] 2,
=—Y2 kiz[z; + zZTR(z, + 8) + 2] (2, + k,2,)
=—Y2 . kizlz; + zZTR(z, + 8) + 2] [-S(z, + 8) + gRTe; +

i T _i T _.. .
—~R'b mT+R( Py + k121) + ky25]
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=—22  kiz]z; + 2]R(z; + 8) + 2] [-S8 + gRTe; +
l T _i T _.. .
—~R'™——T+R (—Py + kqZy) + k,2,]
where k, was a positive real constant. With the fact that for any skew-symmetric
matrix S, z1Sz, = 0. According the reasoning in [16], one of the control inputs T

can be determined at this stage if forcing the term [—S8 + gRTe; + iRTb — iT +

RT(—Py + ky2,) + ky2,] to zero. Let:

h: = gR"e; + —RTb + RT(—By + ky,) + k,2; (5.10)
then:
T = mel(—S8 + h) (5.11)
0
I =Te; = [ 0 (5.12)
mel(—S8 + h)
"1 (6)
To figure out the remaining three control inputs ®t(t) = Bry(t) , backstepping
B
T,(t)

continued after some necessary transformation of the above equation:

Vy=—Y2kiz]z; + ZTR(z, + 8) + z1 (—S8 — %e3 +h) (5.13)

Zh 0\ ol wy [h
denote z, = Zzz], S=| w, 0  —wy|, h =|hy[, then the part in Eq. (5.13):
Z73 —Wy Wy 0 | h,
[ 0 —w, wy][6
T(_gs—L h) = [Z:1 225 Z33]{ — 0 - 8 5.14
Zz( —e3+h)=1[%1 %2 Z3] Wy, wx||9y| (5.14)
__wy Wy 0 _52
hy 0 —w, wy][&]\T0
—[0 0 1]| (Ay|—| @2 0 —awyl|dy [0]
hZ _wy wx 0 ] 5Z 1
hy
+ | hy
h,
—w, 0y + wyb, hy
= [221 Z22 Z23]| —| w,0x — Wy, |+ |Py| +
—wy Oy + wyby h,

+

0
O ]
—wy 0y + wyby — h,
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hy + 0,6, — wy6,

= [Z21 222 223] hy - CUZ5X + wX(SZ
0
w, 0y — Wy, [hx])
= |Z Z
[Z21  Z22] ([_wz5x + 0,6, + hy

Meanwhile, % = RV + RV — By = RSV + R (—SV + gRTe; + ~RTb —--T) —

. 1 R . . T
Pd—ge3+;b_;T_Pd‘, Zz—_S(ZZ+6)_;e3+h_k2Z2 LetM—

(1) (1) 8] 8, = L?Z _(;Sz _‘ng] W= Ez, , then Eq. (5.14) became:
2] (—ss — ey + h) = (Mz,)"(8,0 + Mh) (5.15)
Let z,, = Mz,, h, = Mh, then Eq. (5.13) became:
Vy=—Y% . kiz[z; + zZ]R(z, + &) + z),,(8,w + h,) (5.16)
Continuing the backstepping process, let:
Z3:= 8,0+ h, (5.17)
Vsi=V, +-2]z, (5.18)
Vs =V, +zli, (5.19)
where 72, =8,0+h,=8,tT+Mh=§,T+M [gRTe3 + %RTb + RT(—Py +

kyzy) + RT(=By + ky%,) + kziz] = 8,7+ M|-gSR"e; — - SR™b — SRT(—P, +
kizy) + RT(=Pq + kyz;) 4k, 2, Then:
Vs ==Y3 kizz, + zZTR(z, + 8) + 2),25 + 2373 + k32] 25 (5.20)
=—Y3 kizlz;, +2IR(z, + 8) + 21 (25 + k325 + Z,)
=—¥3% kizlz; + ZJR(z, + 8) + 21 (8, T + hy, + k325 + 2,,)
According the reasoning in [16], the torque control can be set such that the term (8,t +
h, + ksz; + z,,) was zero:
8, t+h, +kyzz +2,, =0 (5.21)
8,t=—h, — kiz; — z,, (5.22)
Note that the size of 8, was 2 by 3, which was not a square matrix. Thus,
pseudoinverse of 8, was used to calculate T in the Eq. (5.22). Due to the fact that
(8,8 (8,871 =1
(8,80 (8,80 (—hy, — kszz — 25,) = —h, — kyzz — 25, (5.23)

Then, T can be calculated as:
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t=-88(8,80) " (h, + ksz5 + 25p) (5.24)
Note that the inverse of the matrix 8,8} existed if and only if det(8,8F) # 0, which
82 +062 —8,8,

indicat that
indicated tha 5.8, 52 + 52

= (62 + 67) (8% + 62) — 626% = 62(62 + 6% +

52) # 0. Obviously, as long as &, # 0, then the inverse of the matrix 8,87 existed,
and a T can be correspondingly calculated. Thus, selection of the constant vector 8 =

Ox
8y | would have a restriction that &, = 0.
6,

5.2 EQUILIBRIUM POINTS

For the nonlinear system described in Eq. (5.1), the primary goal was to follow a pre-
defined trajectory #P, € R®*1 parametrized in time. With the analysis throughout
section 5.1, the trajectory tracking problem became one with three error states defined

in section 5.1. Summing up, one can get:

z, = RV — Py
2, = —S(z; + 8) = —T+h — k2, (5.25)
7, = 8,Tt+h,
z
With T(z,t) and t(z,t), define z: = [zz = g(z,t). It was observed that the overall
Z3

dynamic system of tracking errors was non-autonomous. Using the definition of

equilibrium points defined in Eq. (2.2), one assumed there was/were some equilibrium

points, denoted as z* = 2 , associated with the above error dynamics. Then:
Z3
giz,t)=0 vVt >t (5.26)
Substituting the expression of z with z* in Eq. (5.25), one can get:
RV—-P;=0
~S(z; +8) ——T+h—kyz; = 0 (5.27)
S,t+h, =0

With the control input T = mel(—S8 + h)e; and t= —8%(8,80) 7 (h, + ksz; +

Z,,) available, equation (5.27) became
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RV—P;=0
—Sz} — k;2; + k;Dz} + D(-S8 + gR"e; + RT2 —RTB;) =0 (5.28)
—k,z; —Mz; =0

100 Z
where D=0 1 0]. Thus, the trivial equilibrium point was z* = |z;|, which
0 0O YA

indicated that the quadrotor may not follow exactly the same dynamics of the predefined
trajectory P4 and its derivatives P4, P,4. On the other hand, the only state variable of
interest was the position tracking error z,. At zj, Z] = R—T: + ges; + % — P4 = 0, thus
RTe; = mge; +b—mP, . Hence, at equilibrium points Z* , ER®Te; =
ERR,(¢) Te,, which indicated that the control quantity ®t had one element, 5z,
that contributed nothing to the trajectory tracking. And this extra degree of freedom

could be exploited within controller design to control the orientation and heading of the

quadrotor.
5.3 STABILITY OF THE CONTROLLER WITH CORRECT PARAMETERS

Following the proof from [17], the stability of the controlling algorithm was proved to
be exponentially stable under the condition that the desired trajectory P4 was
sufficiently smooth and its time-derivatives were bounded by an upper bound. The
Lyapunov function
Va=SEi 2 (5.29)
was always positive definite. With the feedback control law, its derivative became
Vy=—=Y3 kizlz;, + zZTR(z, + 8) (5.30)
=—Y?  kizlz; + 2Rz, + z] RS
Using Young’s inequality in Eq. (2.21), for any y > 0,
Vs < — X kizlz; + 2Rz, + L2z, + %(RS)TRS (5.31)

< —(k,zTz, — zTRz, + k,z]7,) — k32125 + ngzl + %(RS)TRS

)4 1
< — | = Dyzlz, — lzilllizel + k232, | — kszlzs + 2 11811

< - || /kl —%Zl _\/k_ZZZ
2 [k (ks - 1) sz
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Here, choose klkzZ% and k1>§would be enough to make the term

2 /kz (k1 — g) [1z 1|z, || > 0. And there existed a constant A > 0, such that

Ve < —AVs + %nsnz (5.32)
From Eqg. (2.22) and Eq. (2.23),
Va(t) < e V,(0) + % 18112 t=>0 (5.33)

Thus, ||z, (t)]|? < 2V5(t), and after infinite time
I8l

2z, £ = t > 34
[ 1()”—J2_2w (5.34)
. 8 . . .
And the radius % could be made as small as possible by appropriately choosing the
Y
controller parameters.
b
[ 1]
VB ‘ [V_B]
PE IP_El
=y
quedrtor
[omega] B e L]
[F_E] FE
= T [m
D - S e I
[v_E] v_B
I
Constantd
Constanth
Frm— [=]] [t=n]
ConstantT
@—pt 4\ 7 £ _cesing P_E sesied
Clock tn
P E_desred oontroller

Figure 10. Quadrotor and controller model

32



The interconnected system of quadrotor and the proposed controller was implemented
in SIMULINK environment. The controller was fed with correct values of the unknown
parameters. Controller alone with correct parameters can be simulated by setting the
noise level in the Kalman-Bucy filter to zero and setting the parameters of interest to

their correct values, respectively. Specifically, the mass of the quadrotor m = 0.206 kg,

0.3
the gravity g = 9.7877 m/s?, and external force disturbance £b = [0.2 Newton.
0.1
0
Initial position P(t,) = | 0 | m, initial linear and angular velocities were zero. By
-1

assumption, the desired trajectory was a smooth and bounded function parametrized in

time. Here, it was assumed to be a simple circle with radius of 1.2 m defined as

fx(t) =1.2cost

PSP S ) (= 4 (5.35)
z(t) = -1
0
Set control parameters k; = 4.5, k, =4, ks =3,and 8§ =| 0 [m/s.
0.15

x/m

Figure 11. Simulation result of trajectory tracking with correct parameters

As indicated from the figure above, the quadrotor followed the desired trajectory
(painted in blue) regardless of its initial deviation. Note also that the quadrotor tilted
itself in order to resist the external force disturbance. The following figure showed error

propagation of this configuration.
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time/s
Error for z 3
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N 1 1 1 Error for z,
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Figure 12. Error propagation of trajectory tracking with correct parameters

As indicated in the figure above, z;, z,, z; converged to zero in less than seconds.

Other than the fact that the quadrotor approached to the desired trajectory, it can be also

inferred that the quadrotor approached both the linear velocities and angular velocities

that was inexplicitly defined in Eq. (5.35). Propagation of actuation variables T and T

was shown in the following figure.

3.5

Thrust

T

1.5 1 1 1 1 1
0 10 12 14 16 18 20
time/s
Torque
400 Iq T T T T
r
X
N, 200 - 7|
g Ll "
0 p— -
_200 1 1 1 1 1
0 10 12 14 16 18 20
time/s

Figure 13. Actuation propagation of trajectory tracking with correct parameters
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As indicated from the figure above, the actuation remained bounded for all time. During
the transition period, the quadrotor tended to lift itself to approach the desired trajectory,
thus T surged to a peak. At the same time, the torque T also changed vibrated to
regulate the quadrotor to balance the external force disturbance. What’s more, it was
interesting to see that the result met the expectation that the third element in torque T,
namely t,, played no role in trajectory tracking, as explained in section 5.2.

To prove that the actuation variables T and t indeed remain bounded for all time,

zero dynamics of the nonlinear system should be analyzed.
5.4 ZERO DYNAMICS ANALYSIS

From the definition of linear velocity in Eq. (5.6),
V=2, —RT(—Py+kz;)+8 (5.35)
there would be a time after which V remains bounded. Because Z, = RV — Py, %,

will remain bounded as well. From the definition of angular velocity in Eq. (5.17),
» = —85(8,85) " |2 — gMRTe; — MR > — MR™(—By + ky2,) — k;Mz, | (5.36)
o will remain bounded since z;, z,, Z; converge to zero exponentially. Thus, inner

states would not escape to infinity.
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Chapter 6 INTERCONNECTION SYSTEM ANALYSIS

Stability of the interconnected system of the proposed observer and the controller was
addressed and analyzed in this chapter, followed by experiments for a real quadrotor.

The Kalman-Bucy filter used for estimating the unknown parameters is exponentially
stable if the linear time-varying system specified in Eq. (2.18) is uniformly complete
observable. This requires that the linear dependence of the functions in (4.46a), (4.46b),
and (4.46¢) must happen uniformly throughout all time and that each individual function
must not degenerate into another. Thus, given sufficiently rich control signals, the
parameter errors converge exponentially, and are independently of the convergence of

the trajectory tracking errors.

For the proposed controller introduced in chapter 5, it was assumed that the controller

design procedure used the correct parameters. However, if a connection of the observer

and controller was considered, the estimated parameters (%) and (%) would replace

the correct parameters % and %. To this effect, it was triggered to analyze the altered

controlling algorithm in the same fashion in chapter 5. In this chapter onwards, define

€ =%, (= %, 4 —( ) e ( ) for calculation convenience. When correct

parameters were used, Eq. (5.20) became

-3 kiz]z; + ZTR(z, + 8) (6.1)
0 .
with control variables T = 0 and ©=—858(8,80) " (hy, + ksz3 +
mel (=S8 + h)

Zon).
Now, using estimated parameters that came out of the observer, all of the original terms

that contained ¢; and , were placed with an overbar in Eq. (5.20):

0
T = 0 (6.2)
= e3( Ss + h)
and
= —87(8,8T)" ( + ka7 + z2n) (6.3)
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= ~81(8,80) ! {Mz,
+M [—gSRTe3 — SR, + RTT, — SR™(—Py + k,;)
+ RT(—Py + k7)) + szz] + k3 (8,0 + lTn)}
Let P, = Mz, + k38,0 — gMSRTe; — MSRT(—Pg + k,2;) — MRTPy, so that all of

the remaining terms include estimated terms ; and ,, then

t = —85(8,80)71[P, — MSRT(, + kyMR"Z, + k,Mz, + k;Mh]
= —87(8,80) 7" {P, — MSR'T, + k;MR"(ge; + {, — {RT —
Py + k;M[=S(z, + 8) — T + h — kyz,] + k;Mh + MRT(;}
Let P, = P, + k;gMR"e; — k;MR"Py — k,S(z, + 8) — k2Mz,, so that all of the
remaining terms include estimated terms ¢; and {;, then
t=—87(5,81)1 [PZ — MSR'Q, + k;MRT(, — k;MRT,RT —
koMGT + (ky + ks)Mh + MRT |
= —81(8,80) 7" [P, + M(kyI; = S)RTL, — (ky +

kZ)M(Z%eg(—ss +h)es + (kp + ks)Mh + MRTfZ]

= —81(8,81)! [Pz +M(k,1s — SRS + (kg + ky)MelSSes —
(ky + k,)MeThe; + (k, + ks)Mh + MRTfZ]
= —871(8,87)1 {Pz + M(k, 15 = SRS + (ky + ky)MelSSes —
(ky + k;)Mel[gRTe; + RTG, + RT(—Py + kq2y) + k,z,]es +
(ky + k3)M[gR"e; + RTG, + RT(=Py + ky2;) + koz,| +
MRTfZ}
Let P; =P, + (k; + k,)MelS8e; — (ky + k;)Mel[gRTe; + RT(—Py + k;2;) +
koz,|es + (ky + k3)M[gRTe; + RT(—Py + k;z,) + k,z,] , so that all of the
remaining terms include estimated terms ¢; and T, then

t=—81(5,81)1 [P3 + M(ky I3 — S)RTG — (kg +

k2)MeIR™Ge; + (k, + k3)MRTE, + MR, |
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= —81(8,80) 7" [Py + (ky + k; + ks)MRTE, — MSRTL, — (ky +
k2)MeIR™Ge; + MRTE, |
Define & = ¢, — ¢ and {, = {, — {,, Eq. (5.20) became
Vy=—=33 kizlz, + zZJR(z, + 8) + (6.4)
2] [(ky + ky + k3)MRTE, — MSRTE; — (ky + k;)MelR™ e + MR |
The closed-loop system can be regarded as a perturbed system with state z,, z,, z3

and perturbations j, (; Since the velocities V and w remain bounded for all time,

the matrix S remain bounded. Thus, the perturbed system is locally Lipschitz in the

state and perturbations. To simplify the result, consider ||Z|| = max([|T|, ”(2”) z=
Z
Z;
Z3

. And notice that from Eqg. (5.31), when large y is chosen, an upper bound on the

derivative of the Lyapunov function can be expressed as
Vs < —kllzl|(llzll - BY) (6.5)
where k > 0 and it depends on k,, k,, y. B Is a positive constant. For sufficiently

large tracking errors, V5 is negative definite. According to the theorem in section 2.2.5,

the closed-loop system is locally input-to-state stable to perturbations {, and (;
Because the external perturbations arising from the estimation errors are exponential
stable, the interconnection of the proposed observer and the controller is locally

asymptotically stable.

The interconnected system of quadrotor, the proposed observer and the proposed
controller was implemented in SIMULINK environment, as shown in figure 14. The

controller was fed with estimated values of the unknown parameters that came from

— —

the observer, namely {; = (%) ;= (%) Note that one of the control variable t

was calculated inside the observer due to the problem of algebraic loops.

The overall interconnected system can be simulated by setting the noise level in the
Kalman-Bucy filter to zero. Specifically, the mass of the quadrotor m = 0.206 kg, the

0.3
gravity g = 9.7877 m/s?, and external force disturbance £b = [0.2
0.1

Newton. Initial
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0

position P(t,) = [ 0 | m, initial linear and angular velocities were zero. For the

-1
observer, set initial guess of the mass 7i(t,) = 0.1 kg, and initial external force
. 0
Eb(ty) = |0| Newton. By assumption, the desired trajectory was a smooth and
0

bounded function parametrized in time. Here, it was assumed to be a simple circle with
radius of 1.2 m defined as

x(t) =1.2cost

ctserver

y(t) = 1.2sint t=>0 (6.6)
z(t) = —
0
Set control parameters k; = 4.5, k, =4, k; =3,and & = [ 0 | m/s.
0.15

a0 _Vsuslzation

controller

Figure 14. Quadrotor, observer and controller model

After simulation, errors of unknown parameters and backstepping errors were checked,
shown in the following figures. As indicated from figures below, the unknown

1 b . .
parameters — and ~ converged to a small neighborhood around zero after a while.

Notice that the error for the external force along z-axis was larger than those along x-
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axis and y-axis. This was due to the fact that the initial estimation of the mass was
smaller than the actual mass of 0.2 kg, which led to a bigger control value for the thrust
to keep the quadrotor from falling down. In such a way, the initial estimation of the
external force along z-axis was larger than the actual value of 0.3 Newton to

“compensate” the gravity downwards in the presence of a bigger thrust upwards.

Error for Mass when Q=0.01eye(7) & R=0.01eye(3)

Error form
-0.05 :
o)
™4
-0.1 ]
_0. 1 5 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100
time/s
Error for External Disturbance in E
0.4 = T | T T ; T Error for bEX
Error for bE
027 y
i / Error for bE
. ¥4
Z O0FH | i
-0.2 7/ :
_0.4 1 1 1 1 1 il 1 1 1

0 10 20 30 40 50 60 70 80 90 100
time/s

Figure 15. Error propagation of unknown parameters

Error for z 1
0.6 T T T T T T T T T

Error for z,

1

Error for z 12

02+ \ Error for Z.| |
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time/s
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Figure 16. Error propagation of backstepping error z,
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Figure 17. Error propagation of backstepping error z,
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Figure 18. Error propagation of backstepping error z;
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As indicated in the figures above, z,, z,, z; converged to desired tracking dynamics
in awhile. When the estimated parameters approached their real values at around 55 s,
the tracking errors approached equilibrium points near zero. As derived before, the
position error z; converged to a constant in a small neighborhood around zero of a
radius of 3 cm, which was favorable in practical cases. Signal propagation for the thrust

and the torque were shown in the figure below:

Thrust
3 T T T T T T T T T
—T
Z| |
2 ]
pd
1 .
0 1 1 1 1 1 1 | 1 1
0 2 4 6 8 10 12 14 16 18 20
time/s
Torque
400 T T T T 9 T T T T
200 - x| 4
CRNEE o
E 0 1 = | T,
-200 - .
_400 Y 1 1 1 1 1 1 1 1 1
0 0.2 04 0.6 0.8 1 1.2 14 1.6 1.8 2
time/s

Figure 19. Propagation of actuation variables

As indicated from the figure above, the thrust and the torque tended to stay still around
the equilibrium points. And the third element of torque, Z7,, remained zero for all time
with no contribution to the task of trajectory tracking, as proved in section 5.2. The fact
that the thrust showed a slowly varying sinusoidal wave around 2 Newton could be
explained with the equation in section 5.2, specifically RTe; = mge; + b — mP,. As
the time-varying term P, was related to the predefined trajectory, the quadrotor would
have to tilt itself to accelerate in any directions in xy-plane. So that the term RT would
also follow the dynamics of P4. The rotational matrix R would lead the quadrotor to
orient to the direction of linear velocity in xy-plane. Thus, T would also vary with

respect to time.
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Chapter 7 EXPERIMENTAL RESULTS

The section presented the experimental results using the proposed observer and
controller on a real quadrotor. Experiments were conducted in MATLAB/SIMULINK
environment that integrated an optical motion capture system, VICON, and radio
communication with the quadrotor. VICON Bonita motion capture system played the
role of external sensors for the quadrotor due to the lack of on-board sensors. The
quadrotor’s position, orientation, linear velocity and angular velocity can be estimated
with relatively low noise. A graphical representation of the overall architecture was

shown in the figure below.

Figure 20. Quadrotor measurement and communication architecture [18]

The controller gains for the experiments were adjusted to k; = 4.5, k, = 3, k3 = 2,

0
and 8§ = [ 0
0.1

R = 0.0113, and the initial covariance matrix P(t,) = I,. Actual mass of the quadrotor

m/s. The Kalman filter parameters of the observer were Q = 0.011,,

was 0.206 kg. Initial guess of the mass m(t,) = 0.1 kg, and initial external force

0
Eb(t,) = ’0‘ Newton. The initial guess of the linear velocity was ignored here
0

because the estimated linear velocity coming from the observer was not used for the

proposed controller. The quadrotor was initially placed at Initial position P(t,) =
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0.83
—0.24

velocities. The observer was active right from the start of the experiments.

—0.06
\ m, with initial orientation R(t,) = I3, and zero initial linear and angular

Two experiments were conducted with different desired trajectories. Next two sections

discussed experimental results, separately.
7.1 EXPERIMENT RESULTS OF FOLLOWING ACIRCLE IN 2D SPACE

The first experiment evaluated the performance of the proposed controller with an oval

trajectory, namely a circle in two-dimensional plane described by:
1.2 cost
P (t) =|1.2sint
-1

t>0 (7.1)

— Actual
Reference

0

0.5

v/m ,
g x/m

1

Figure 21. Comparison of the desired reference trajectory and the actual trajectory
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Figure 22. Time evolution of errors
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Figure 24. Time evolution of estimated parameters
A comparison between the desired trajectory and the actual one was shown in figure 21.

In spite of initial errors in position, linear velocity and angular velocity, the quadrotor

gradually approached the oval trajectory, shown by the curve in blue.
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Figure 22 showed the evolution of errors. Quantitively, after initial transient for about
2 seconds, the position error had not gone beyond 0.1 meters. Meanwhile, the other
two errors converged also within seconds. In steady state, the position error was
bounded by 0.05 meters in magnitude. The steady state errors were due to:
e theoretical upper bounds of the errors, specified in Eq. (5.34) and Eq. (6.5);
e imperfect modeling of the quadrotor. There existed aerodynamic forces that
depended on the states of the quadrotor;
e a non-constant external force disturbance in the surrounding. The quadrotor
could suffer varying external disturbance like the wind disturbance, uneven
mass distribution;

e varying power output from the on-board battery.

In figure 24, the estimated parameters slowly converged to a neighborhood around their
actual values. Estimated values of the external forces along x-axis and y-axis in earth
frame were better estimated than that along z-axis. This was due to the fact that the
dynamics of the estimated mass and the estimated external force disturbance was
closely related to the thrust. And the thrust always pointed nearly upwards in earth frame,
making the estimated value of the estimated external force disturbance along z-axis
varying in order to stabilize the quadrotor. Within 80 seconds, the estimated
parameters entered steady states. Reasons that the estimated parameters, especially the
estimated mass and the estimated external force disturbance along z-axis, did not
converge to their correct parameters were:
e almost constant rotational matrix after seconds, leading to a similar result of that
simulated in Example 1, section 4.2;
¢ the quadrotor was indeed stabilized to follow the desired trajectory, and it could
work with a smaller estimated value of its mass and its external force disturbance

along z-axis.

7.2 EXPERIMENT RESULTS OF FOLLOWING A LEMNISCATE IN 3D
SPACE

The second experiment evaluated the performance of the proposed controller with a

lemniscate trajectory in three-dimensional space described by:
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where R,, Ry, and R, were rotation matrices defined by Z-Y-X fixed angles. That
was, the original trajectory rotated first about z-axis defined in earth frame, then rotated
about y-axis, finally about z-axis. ¢(t) followed ¢(t) = V+sinZt + 1, where V

was the desired speed. In the experiment, V =1 m/s.
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Figure 25. Comparison of the desired reference trajectory and the actual trajectory
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Figure 26. Time evolution of errors
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Figure 28. Time evolution of estimated parameters

As shown in the figures above, similar patterns of all signals could be seen when the

quadrotor was following the lenmiscate trajectory in three-dimensional space. The

estimated parameters became smaller from 120 seconds onwards, which may due to

less output power from battery.
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Chapter 8 PROBLEMS ENCOUNTERED

5.1 NOISE GENERATION FOR SIMULATION

Practically, the noise came from the uncertainty in modeling, disturbance in the
surroundings, etc. The noise was modeled only in chapter 4 for evaluation of the
performance of the observer. Here, white noise was generated by randomly distributed
discrete sampling points. However, the Kalman-Bucy filter worked only in continuous
time case. Thus, the parameters for Kalman-Bucy filter may not guarantee optimal
convergence rate for the generated noise. For chapter 6 where the proposed controller
was involved, there were no noised added in the dynamics of the overall system. On
one hand, the modeling of the quadrotor itself did include the state noise. On the other
hand, the estimated parameters came from the observer, which depended on the
dynamics of linear velocity. However, the linear velocity was in fact accurate enough.
Moreover, algebraic loop errors would occur if manually generated white noise was

added into the system, which was not desirable.
5.2 ALGEBRAIC LOOPS IN SIMULINK

Algebraic loops occurred in simulation of the interconnected system, specified in
chapter 6. Normally, an algebraic loops occurred when there were feedforward or
feedback loops inside a system such that MATLAB itself was unable to solve for the
initial values inside the loops. In such a way, an algebraic variable would go around
within the problematic loop. Some common ways to fix the problem were to specify
manually the initial values by adding a delay block or initial condition block inside
SIMULINK. However, these ways would change the proposed control law, which was
not desirable. Thus, each algebraic loop was checked and solved separately by changing
the block design in SIMULINK. In this specific case, when the thrust and the torque
signals were put together inside the same block for controller, the update control law
for the torque depended on estimated values of derivatives of unknown parameters.
However, those values were inputs for the observer block and could not deliver out to
other blocks at the very start of the simulation. Thus, the control law for the torque was
calculated inside the observer rather than inside the controller. And the new
configuration solved the occurrence of algebraic loops.
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Chapter 9 CONCLUSIONS

The dynamics of the quadrotor was derived through basic physics and was simplified
within reasonable level. Firstly, the model for an open loop model of the quadrotor in
Simulink was created for observation and control purposes. The open loop model was
tested with inputs defined arbitrarily to verify its reliability. Secondly, in the case that
some system parameters were unknown, the dynamics equation was transformed into a
linear time-varying one that can mimic exactly the behavior of the nonlinear system
dynamics. Observability of the linear system was checked and with the use of Kalman-
Bucy filter, the error dynamics of all of the states converged to zero in short time interval.
The effects of the self-tuned noise levels in the design of Kalman-Bucy filter were
exploited. Thirdly, a nonlinear control algorithm was proposed. Using correct values of
unknown parameters, the controller guaranteed global exponential stability of the
tracking error. Lastly, the interconnected system of the model, the observer, and the
controller was proved and assessed to have local asymptotically stability. Adaptive
control of the quadrotor using the designed feedback system was achieved by reacting

to uncertainties in modeling and the surroundings of the quadrotor.
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Chapter 10 RECOMMENDATIONS FOR FUTURE RESEARCH

7.1 DIFFERENT KALMAN FILTER PARAMETERS FOR THE OBSERVER

For above all simulation and experiments, the parameters for the Kalman-Bucy filter,
namely, Q and R, were unchanged. In fact, these two parameters influenced the
convergence rate of the estimated states. Given low noise level in the linear velocity,
these two parameters would have to be a lot smaller to guarantee optimal convergence
rate. It is expected that smaller Q and R will lead a shorter time for estimated m and
b to converge to their real values. However, the primary concern in this article was to
implement trajectory tracking for the quadrotor rather than estimating parameters, as

long as the estimate error dynamics was stable.
7.2 EXPERIMENTS IN VARIOUS SETTINGS

Although the mass and external force disturbance were assumed to be constant for all
time, they can be varying with time in the presence of an observer that guarantees their
convergence to their actual values. For this reason, further experiments can be
conducted within some common scenarios when:

e the quadrotor experiences wind disturbance in its flying zone;

e sudden mass change in the quadrotor such as caching or releasing loads;

e unpredictable output from the onboard motors such as sudden change in thrust.

It can be made deliberately by changing the control law at some time.
7.3 RESEARCH INTO THE INERTIAL MATRIX

Although the inertia matrix of the quadrotor was assumed a scalar matrix in the
dynamics equations of the quadrotor, it would be useful either when one wanted to
estimate it or when the control algorithm involved the inertia matrix. When attempting
to estimate the inertia matrix through the state and output transformation, problems

occur due to the nonlinear nature in the dynamics. Assume that the inertia matrix is a

L, 0 0 ooy b1,
diagonal one ’I=[0 I, 0] fw=|%w,| and Bt =|"x,|. Then through
0 0 I, By, By

the computation with Eq. (3.18), one could get:
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where the elements of the inertia matrix were not linear with state and thus cannot

follow the building methods of LTV mimicking system as in this work. Attempts could
X
be made in finding a proper transformation in the form of Tx(x(t)) = [T (x(t))]' and
a

the observability of the resulting mimicking system should be checked afterwards to
guarantee the observability of the nonlinear system described in Eg. (5.1).
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