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ABSTRACT 

 

Autonomous vehicles belong to a class of systems whose dynamic characteristics are 

independent of time. Due to their nonlinear dynamics, classical theories that deal with 

linear systems are no longer applicable in the analysis or design The specific 

autonomous vehicle considered in this work was an underactuated quadrotor with more 

degrees of freedom than the number of actuations. At the same time, the quadrotor was 

assumed to have an unknown mass and experience constant force disturbances. A 

model-reference adaptive control strategy was designed with an observer and controller 

to implement desired trajectory tracking behavior of the quadrotor. The overall stability 

of the motion was guaranteed with a Kalman-Bucy filter for the design of the state 

observer and Lyapunov-based backstepping techniques for the design of the adaptive 

state feedback controller. 
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Chapter 1 INTRODUCTION 

Motion control of autonomous vehicles always leads to the control of a non-autonomous 

system that interprets the corresponding error dynamics. Therefore, the study of the 

stability of a motion is equivalent to the study of the stability around an equilibrium 

point defined in the state space as explained in [1]. In some cases, the control of a 

nonlinear system can be performed on its LTI (linear time-invariant) model which 

guarantees local exponential stability, as indicated in results of linear system theory. 

Such control law is easy to design. However, the performance of such a method can be 

deteriorated when the system undergoes large deviations from the nominal point and 

when system parameters suffer from changes with respect to time. Linear methods have 

been applied in [2] and [3] but the vehicle system only represented closed loop stability 

for small regions near the equilibrium point. Generally, direct method of Lyapunov 

analysis works well on the stability of a nonlinear system but the difficulty is to find a 

Lyapunov function with specific properties. Backstepping techniques are adopted to 

guarantee the tracking error dynamics uniformly globally asymptotically stable. 

However, the specific autonomous vehicle in this work is a quadrotor with four 

propellers actuated in thrust and angular velocities. As a result, the number of actuations 

are less than the total degrees of freedom, which is six for a quadrotor. Generally, 

backstepping techniques are not applicable to this kind of underactuated systems. 

However, as indicated in [4], a simplified model of a quadrotor is feedback linearizable, 

and hence backstepping techniques can be used. For example, it has been adopted to 

quadrotor trajectory tracking problem in [5]. 

 

Typically, a system is influenced by its surroundings and its internal changes in the 

dynamic parameters, and hence should be observed either by external or internal sensors 

for control purpose. However, full state observations are not always available. This 

posed the necessity of state estimation from available states. Algorithms for state 

estimation can be found in [6] with estimation law derived in the backstepping 

procedures for constant external forces, and in [7] with estimation of multiple states 

with extended Kalman-Bucy filter. 
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In practical cases, the control law designed should not contain unbounded terms or 

singularities and hence bounds should be exerted on the control quantities either 

automatically by the working limitations of a system or manually.  

 

In this work, the specific autonomous vehicle is a quadrotor with four propellers 

actuated in thrust and angular velocities with six degrees of freedoms. Its mass is 

assumed to be a constant but is unknown. And a constant term accounts for the constant 

force disturbance like constant wind and uncertainties in the model like uneven mass 

distribution of the quadrotor. It is interesting to notice that the estimated quantities, both 

the mass and the force disturbance can be suited in a linear time-varying system that 

mimics exactly the behaviors of the nonlinear system through proper state 

transformation. And Kalman-Bucy filter provides an easy and tunable solution for the 

state estimation problem. The inputs of controller are expected to include the desired 

trajectory, the estimation of mass and constant force disturbance, and other states from 

a VICON Bonita motion capture system [8]. Bounds on the desired trajectory position 

vector that is time-parameterized and its time derivatives should be exerted when 

selecting the appropriate trajectory. And working limits of the quadrotor should be put 

into consideration because there are cases when the vehicle is not able to achieve 

calculated thrust and angular velocities. These constraints should be analyzed in terms 

of stability of the controller. Generally, interconnection of two stable systems may not 

lead to an overall stable system and hence the stability of the interconnection of the 

stabilized Kalman-Bucy filter and the controller is of great importance for the overall 

performance of the adaptive control system. 

 

The structure of this paper is as followed: chapter 2 presents the required theorems and 

mathematics background used in this work; chapter 3 deals with the modelling of the 

dynamics of the vehicle and simulation of an open loop model; chapter 4 focuses on the 

modeling of a state observer and corresponding simulations; chapter 5 presents the 

modeling of a backstepping controller and corresponding simulations; chapter 6 studies 

with the derivation of the interconnected system of the proposed observer and controller, 

and corresponding simulations; chapter 7 deals with experimental results and 

comparison with simulation results ;chapter 8 presents problems encountered and 

possible solutions; chapter 9 is the conclusion; chapter 10 gives some recommendations 

for future work. 
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Chapter 2 MATHEMATICAL PRELIMINARIES 

2.1 NONLINEAR SYSTEMS AND EQUILIBRIUM POINTS 

As explained in [9], a nonlinear dynamic system can usually be represented by nonlinear 

differential equations as 

𝐱̇𝐱 = 𝒇𝒇(𝐱𝐱, 𝑡𝑡)                          (2.1)                 

where 𝒇𝒇 is an 𝑛𝑛 × 1 nonlinear vector function, and 𝐱𝐱 is an 𝑛𝑛 × 1 state vector. 𝐱𝐱(𝑡𝑡) 

is the system trajectory. Equilibrium points 𝐱𝐱∗of such a system are defined to be 

  𝒇𝒇(𝐱𝐱∗, 𝑡𝑡) ≡ 0        ∀𝑡𝑡 ≥ 𝑡𝑡0           (2.2) 

In the special case of a linear time-varying system, 

𝐱̇𝐱 = 𝐀𝐀(𝑡𝑡)𝐱𝐱                          (2.3) 

a unique equilibrium point is at the origin 𝟎𝟎 unless 𝐀𝐀(𝑡𝑡) is always singular. 

Autonomous systems are systems that 𝒇𝒇 does not depend explicitly on time such that  

𝐱̇𝐱 = 𝒇𝒇(𝐱𝐱)                           (2.4) 

is satisfied. Non-autonomous systems are hence those that are in the form of Eq. (2.1). 

In the field of control, the above definitions have not included the controlling vector 𝐮𝐮, 

which is an 𝑚𝑚 × 1 input vector. 

For an autonomous system described in Eq. (2.4), when control variables are included, 

the closed-loop dynamics becomes 

𝐱̇𝐱 = 𝒇𝒇(𝐱𝐱,𝐮𝐮)                          (2.5) 

and the overall dynamics may be either autonomous if 𝐮𝐮 = 𝐮𝐮(𝐱𝐱) or non-autonomous 

if 𝐮𝐮 = 𝐮𝐮(𝐱𝐱, 𝑡𝑡). 

 

In practical problems, we are more concerned with stability of a motion rather than an 

equilibrium point. The ability to follow the original motion trajectory if slightly 

perturbed away from it. Let 𝐱𝐱∗(𝑡𝑡) be the solution of Eq. (2.4) corresponding to initial 

condition 𝐱𝐱∗(0) = 𝐱𝐱0 and the perturbation 𝐱𝐱(0) = 𝐱𝐱0 + 𝛿𝛿𝐱𝐱0. Then the variation of 

the motion error is  

𝐞𝐞(𝑡𝑡) = 𝐱𝐱(𝑡𝑡) − 𝐱𝐱∗(𝑡𝑡)                      (2.6) 

𝐞̇𝐞 = 𝒇𝒇(𝐱𝐱∗ + 𝐞𝐞, 𝑡𝑡) − 𝒇𝒇(𝐱𝐱∗, 𝑡𝑡) = 𝒈𝒈(𝐞𝐞, 𝑡𝑡)                (2.7) 

and the corresponding motion error dynamic system is a non-autonomous system. 
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2.2 STABILITY OF DYNAMIC SYSTEMS 

2.2.1 Local Stability and Local Uniform Stability 

As explained in [9], the equilibrium point 𝟎𝟎 is stable at 𝑡𝑡0 if ∀𝑅𝑅 > 0, ∃ 𝑟𝑟(𝑅𝑅, 𝑡𝑡0) >

0 such that 

‖𝐱𝐱(𝑡𝑡0)‖ < 𝑟𝑟(𝑅𝑅, 𝑡𝑡0) ⟹  ‖𝐱𝐱(𝑡𝑡)‖ < 𝑅𝑅       ∀ 𝑡𝑡 ≥ 𝑡𝑡0     (2.8) 

Otherwise, the equilibrium point 𝟎𝟎 is unstable. 

The equilibrium point 𝟎𝟎 is locally uniformly stable if the scalar 𝑟𝑟 in Eq. (2.8) can be 

chosen independently of 𝑡𝑡0. 

2.2.2 Local Asymptotic Stability and Local Uniform Asymptotic Stability 

As explained in [9], the equilibrium point 𝟎𝟎 is locally asymptotically stable at 𝑡𝑡0 if it 

is stable, and ∃ 𝑟𝑟(𝑡𝑡0) > 0 such that 

‖𝐱𝐱(𝑡𝑡0)‖ < 𝑟𝑟(𝑡𝑡0) ⟹  ‖𝐱𝐱(𝑡𝑡)‖ → 0  as  𝑡𝑡 → ∞      (2.9) 

The equilibrium point 𝟎𝟎 is locally uniformly asymptotically stable if it is uniformly 

stable, and ∃ 𝐁𝐁𝑅𝑅𝑜𝑜, a ball of attraction whose radius is independent of 𝑡𝑡0, such that ∀ 

system trajectory with initial states in 𝐁𝐁𝑅𝑅0 converges to 𝟎𝟎 uniformly in 𝑡𝑡0. 

2.2.3 Exponential Stability 

As explained in [9], the equilibrium point 𝟎𝟎 is exponentially stable if ∃ 𝛼𝛼, 𝜆𝜆 > 0, 

such that for some ball 𝐁𝐁𝑟𝑟𝑜𝑜, 

‖𝐱𝐱(𝑡𝑡)‖ ≤ 𝛼𝛼‖𝐱𝐱(𝑡𝑡0)‖𝑒𝑒−𝜆𝜆(𝑡𝑡−𝑡𝑡0)        ∀ 𝑡𝑡 ≥ 0       (2.10) 

2.2.4 Local Stability and Global Stability 

As explained in [9], local stability implies that values of 𝑟𝑟 in Eq. (2.8) and (2.9) is not 

arbitrarily chosen, global stability implies that values of 𝑟𝑟 in Eq. (2.8) and (2.9) can be 

arbitrarily chosen in the set of positive real number. 

2.2.5 Input-to-state Stability 

From [10], a nonlinear system in Eq. (2.5) is said to be locally input-to-state stable if 

there exist a class 𝓚𝓚𝓚𝓚 function 𝛽𝛽, a class 𝓚𝓚 function 𝛾𝛾, and positive constants 𝑘𝑘1 

and 𝑘𝑘2 such that for any initial state 𝐱𝐱(𝑡𝑡0) with ‖𝐱𝐱(𝑡𝑡0)‖ < 𝑘𝑘1 and any input 𝐮𝐮(𝑡𝑡) 

with sup𝑡𝑡≥𝑡𝑡0‖𝐮𝐮(𝑡𝑡)‖ < 𝑘𝑘2, the solution exists and satisfies 
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‖𝐱𝐱(𝑡𝑡)‖ ≤ 𝛽𝛽(‖𝐱𝐱(𝑡𝑡0)‖, 𝑡𝑡 − 𝑡𝑡0) + 𝛾𝛾 � sup
𝑡𝑡0≤𝜏𝜏≤𝑡𝑡

‖𝐮𝐮(𝜏𝜏)‖�         (2.11) 

for all 𝑡𝑡 ≥ 𝑡𝑡0 ≥ 0. Let 𝐷𝐷 = {𝐱𝐱 ∈ 𝐑𝐑𝑛𝑛| ‖𝐱𝐱‖ < 𝑟𝑟}, 𝐷𝐷𝑢𝑢 = {𝐮𝐮 ∈ 𝐑𝐑𝑚𝑚| ‖𝐮𝐮‖ < 𝑟𝑟𝑢𝑢}. It is said 

to be input-to-state stable if 𝐷𝐷 = 𝐑𝐑𝑛𝑛, 𝐷𝐷𝑢𝑢 = 𝐑𝐑𝑚𝑚, and inequality is satisfied for any initial 

state 𝐱𝐱(𝑡𝑡0) and any bounded input 𝐮𝐮(𝑡𝑡). 

Stability of perturbed systems can be proved under certain constraints. Let 𝐷𝐷 =

{𝐱𝐱 ∈ 𝐑𝐑𝑛𝑛| ‖𝐱𝐱‖ < 𝑟𝑟} ,  𝐷𝐷𝑢𝑢 = {𝐮𝐮 ∈ 𝐑𝐑𝑚𝑚| ‖𝐮𝐮‖ < 𝑟𝑟𝑢𝑢} , and 𝒇𝒇: [0,∞) × 𝐷𝐷 × 𝐷𝐷𝑢𝑢 → 𝐑𝐑𝑛𝑛  be 

piecewise continuous in 𝑡𝑡 and locally Lipschitz in 𝑢𝑢 and. Let 𝑉𝑉: [0,∞) × 𝐷𝐷 → 𝐑𝐑 be 

a continuously differentiable function such that  

𝛼𝛼1(‖𝐱𝐱‖) ≤ 𝑉𝑉(𝑡𝑡, 𝐱𝐱) ≤ 𝛼𝛼2(‖𝐱𝐱‖)                (2.12) 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝐱𝐱
𝒇𝒇(𝑡𝑡, 𝐱𝐱,𝐮𝐮) ≤ −𝛼𝛼3(‖𝐱𝐱‖)   ∀‖𝐱𝐱‖ ≥ 𝜌𝜌(‖𝐮𝐮‖) ≥ 0 (2.13) 

∀(𝑡𝑡, 𝐱𝐱,𝐮𝐮) ∈ [0,∞) × 𝐷𝐷 × 𝐷𝐷𝑢𝑢  where 𝛼𝛼1 , 𝛼𝛼2  and 𝛼𝛼3  are class  𝓚𝓚 functions. Then, 

the system described in Eq. (2.5) is locally input-to-state stable with 𝛾𝛾 = 𝛼𝛼𝟏𝟏−𝟏𝟏°𝛼𝛼2°𝜌𝜌, 

𝑘𝑘1 = 𝛼𝛼2−1(𝛼𝛼1(𝑟𝑟)), and 𝑘𝑘2 = 𝜌𝜌(min {𝑘𝑘1,𝜌𝜌(𝑟𝑟𝑢𝑢)}). Moreover, if 𝐷𝐷 = 𝐑𝐑𝑛𝑛, 𝐷𝐷𝑢𝑢 = 𝐑𝐑𝑚𝑚, and 

𝛼𝛼1  is a class  𝓚𝓚∞  function, then the system in Eq. (2.5) is input-to-state stable 

with 𝛾𝛾 = 𝛼𝛼𝟏𝟏−𝟏𝟏°𝛼𝛼2°𝜌𝜌. 

2.3 LYAPUNOV’S DIRECT METHOD FOR NON-AUTONOMOUS SYSTEMS 

2.3.1 Locally Positive Definite Lyapunov Function 

As explained in [9], a scalar time-varying function 𝑉𝑉(𝐱𝐱, 𝑡𝑡) is locally positive definite 

if 𝑉𝑉(𝟎𝟎, 𝑡𝑡) = 0 and ∃ a time-invariant positive definite function 𝑉𝑉𝑜𝑜(𝐱𝐱) in a ball 𝐁𝐁𝑅𝑅𝑜𝑜 

such that 

𝑉𝑉(𝐱𝐱, 𝑡𝑡) ≥ 𝑉𝑉𝑜𝑜(𝐱𝐱)        ∀ 𝑡𝑡 ≥ 0             (2.14) 

Globally positive definite functions can be defined similarly for 𝐱𝐱 to be arbitrarily 

chosen in 𝐑𝐑𝑛𝑛×1 other than 0. 

2.3.2 Decrescent Function 

As explained in [9], a scalar time-varying function 𝑉𝑉(𝐱𝐱, 𝑡𝑡) is decrescent if 𝑉𝑉(𝟎𝟎, 𝑡𝑡) =

0 and ∃ a time-invariant positive definite function 𝑉𝑉𝑙𝑙(𝐱𝐱) in a ball 𝐁𝐁𝑅𝑅𝑜𝑜 such that 

𝑉𝑉(𝐱𝐱, 𝑡𝑡) ≤ 𝑉𝑉𝑙𝑙(𝐱𝐱)        ∀ 𝑡𝑡 ≥ 0             (2.15) 
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2.3.3 Lyapunov Theorem for Non-Autonomous Systems 

2.3.3.1 Lyapunov Local Stability 

As explained in [9], if, in a ball 𝐁𝐁𝑅𝑅𝑜𝑜  around the equilibrium point  𝟎𝟎 , ∃  a scalar 

function 𝑉𝑉(𝐱𝐱, 𝑡𝑡)  with continuous partial derivatives with respect to 𝐱𝐱  such that 

𝑉𝑉(𝐱𝐱, 𝑡𝑡) is positive definite, and 𝑉̇𝑉(𝐱𝐱, 𝑡𝑡) is negative semi-definite, then the equilibrium 

point 𝟎𝟎 is locally stable in the sense of Lyapunov. 

2.3.3.2 Lyapunov Local Uniform Stability and Local Uniformly Asymptotic 
Stability 

As explained in [9], if the equilibrium point 𝟎𝟎 is locally stable in the sense of Lyapunov, 

and 𝑉𝑉(𝐱𝐱, 𝑡𝑡) is decrescent, then the equilibrium point 𝟎𝟎 is locally uniformly stable. 

If, in a ball 𝐁𝐁𝑅𝑅𝑜𝑜  around the equilibrium point 𝟎𝟎, ∃ a scalar function 𝑉𝑉(𝐱𝐱, 𝑡𝑡) with 

continuous partial derivatives with respect to 𝐱𝐱 such that 𝑉𝑉(𝐱𝐱, 𝑡𝑡) is positive definite 

and decrescent, and 𝑉̇𝑉(𝐱𝐱, 𝑡𝑡) is negative definite, then the equilibrium point 𝟎𝟎 is locally 

uniformly asymptotically stable. 

2.3.3.3 Lyapunov Global Uniform Asymptotic Stability 

As explained in [9], if ∃ a scalar function 𝑉𝑉(𝐱𝐱, 𝑡𝑡) with continuous partial derivatives 

with respect to 𝐱𝐱 such that 𝑉𝑉(𝐱𝐱, 𝑡𝑡) is positive definite and decrescent, and 𝑉̇𝑉(𝐱𝐱, 𝑡𝑡) is 

negative definite, and 𝑉𝑉(𝐱𝐱, 𝑡𝑡) is radially unbounded, then the equilibrium point 𝟎𝟎 is 

globally uniformly asymptotically stable. 

2.4 OBSERVABILITY AND OBSERVER DESIGN THROUGH STATE AND 

OUTPUT TRANSFORMATION 

2.4.1 Observability for Nonlinear Systems 

As discussed in [11], given a nonlinear, non-autonomous dynamic system 

�
𝐱̇𝐱(𝑡𝑡) = 𝒇𝒇(𝑡𝑡, 𝐱𝐱(𝑡𝑡),𝐮𝐮(𝑡𝑡))
𝐲𝐲(𝑡𝑡) = 𝒉𝒉�𝑡𝑡, 𝐱𝐱(𝑡𝑡),𝐮𝐮(𝑡𝑡)� ,        𝐱𝐱(𝑡𝑡0) = 𝐱𝐱0     (2.16) 

where 𝐱𝐱(𝑡𝑡) ∈ 𝐑𝐑𝑛𝑛×1, 𝐮𝐮(𝑡𝑡) ∈ 𝐑𝐑𝑚𝑚×1, 𝐲𝐲(𝑡𝑡) ∈ 𝐑𝐑𝑜𝑜×1. The system is observable on [𝑡𝑡0, 𝑡𝑡𝑓𝑓] 

for a given  𝐮𝐮 ∶  [𝑡𝑡0, 𝑡𝑡𝑓𝑓] → 𝐑𝐑𝑚𝑚×1  if and only if for that input 𝐮𝐮(𝑡𝑡) the initial state 

𝐱𝐱(𝑡𝑡0) = 𝐱𝐱0 is uniquely determined by the response 𝐲𝐲(𝑡𝑡) of the system for 𝑡𝑡 ∈ [𝑡𝑡0, 𝑡𝑡𝑓𝑓]. 
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The nonlinear system is observable if and only if it is observable for ∀ 𝐮𝐮(𝑡𝑡) ∶  [𝑡𝑡0, 𝑡𝑡𝑓𝑓] →

𝐑𝐑𝑛𝑛×1. 

2.4.2 Linear Mimicking Systems 

If ∃ 𝐓𝐓𝑥𝑥 ∶  𝐑𝐑𝑛𝑛×1 → 𝐑𝐑𝑝𝑝×1 𝐯𝐯(𝑡𝑡) and 𝐓𝐓𝑦𝑦 ∶  𝐑𝐑𝑜𝑜×1 → 𝐑𝐑𝑞𝑞×1 with 𝐓𝐓𝑥𝑥(𝐱𝐱0) = 𝐰𝐰0 and 

𝐯𝐯(𝑡𝑡) = 𝐮𝐮(𝑡𝑡) for ∀ 𝑡𝑡 ∈ [𝑡𝑡0, 𝑡𝑡𝑓𝑓] such that 

�
𝐰𝐰(𝑡𝑡) = 𝐓𝐓𝑥𝑥(𝐱𝐱(𝑡𝑡))
𝐳𝐳(𝑡𝑡) = 𝐓𝐓𝑦𝑦�𝐲𝐲(𝑡𝑡)�                       (2.17) 

holds for ∀ 𝑡𝑡 ∈ [𝑡𝑡0, 𝑡𝑡𝑓𝑓], then the system 

�
𝐰̇𝐰(𝑡𝑡) = 𝐀𝐀�𝑡𝑡,𝐮𝐮(𝑡𝑡), 𝐲𝐲(𝑡𝑡)�𝐰𝐰(𝑡𝑡) + 𝐁𝐁�𝑡𝑡,𝐮𝐮(𝑡𝑡), 𝐲𝐲(𝑡𝑡)�𝐯𝐯(𝑡𝑡)

𝐳𝐳(𝑡𝑡) = 𝐂𝐂�𝑡𝑡,𝐮𝐮(𝑡𝑡), 𝐲𝐲(𝑡𝑡)�𝐰𝐰(𝑡𝑡)
𝐰𝐰(𝑡𝑡0) = 𝐰𝐰0

       (2.18) 

is mimicking the dynamics of the nonlinear system described in Eq. (2.13). 

2.4.3 Observability Equivalence 

If the nonlinear system described in Eq. (2.13) with a given input 𝐮𝐮(𝑡𝑡) ∶  [𝑡𝑡0, 𝑡𝑡𝑓𝑓] →

𝐑𝐑𝑚𝑚×1, and 

(1) ∃ 𝐓𝐓𝑥𝑥 ∶  𝐑𝐑𝑛𝑛×1 → 𝐑𝐑𝑝𝑝×1  and 𝐓𝐓𝑦𝑦 ∶  𝐑𝐑𝑜𝑜×1 → 𝐑𝐑𝑞𝑞×1  such that the linear time-varying 

system described in Eq. (2.15) mimics the dynamics of the nonlinear system; 

(2) For ∀ 𝐲𝐲(𝑡𝑡) ∶  [𝑡𝑡0, 𝑡𝑡𝑓𝑓] → 𝐑𝐑𝑜𝑜×1, the resulting linear time-varying system is observable 

on [𝑡𝑡0, 𝑡𝑡𝑓𝑓]; 

(3) The state transformation 𝐓𝐓𝑥𝑥 is injective. 

Then, the nonlinear system is observable on [𝑡𝑡0, 𝑡𝑡𝑓𝑓] for the given 𝐮𝐮(𝑡𝑡).  

2.4.4 Stability Equivalence 

Define 𝐓𝐓𝑥𝑥′ ∶  𝐑𝐑𝑝𝑝×1 → 𝐑𝐑𝑛𝑛×1 that satisfies 𝐓𝐓𝑥𝑥′�𝐓𝐓𝑥𝑥(𝐱𝐱)� = 𝐱𝐱 for ∀ 𝐱𝐱 ∈ 𝐑𝐑𝑛𝑛×1. The above 

equivalence of the observability between the nonlinear system and the linear time-

varying mimicking system can guarantee the observability that initial state 𝐰𝐰(𝑡𝑡0) =

𝐰𝐰0 is uniquely determined by the response 𝐳𝐳(𝑡𝑡) of the system for 𝑡𝑡 ∈ [𝑡𝑡0, 𝑡𝑡𝑓𝑓] but 

cannot guarantee the observation convergence of the state 𝐱𝐱(𝑡𝑡) through the inverse 

transformation 𝐓𝐓𝑥𝑥′(𝐰𝐰(𝑡𝑡)). However, if ∃ α > 0 such that 

‖𝐓𝐓𝑥𝑥′(𝐰𝐰𝑎𝑎) − 𝐓𝐓𝑥𝑥′(𝐰𝐰𝑏𝑏)‖ ≤ α‖𝐰𝐰𝑎𝑎 − 𝐰𝐰𝑏𝑏‖               (2.19) 
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holds for ∀  𝐰𝐰𝑎𝑎,𝐰𝐰𝑏𝑏 ∈ 𝐑𝐑𝑝𝑝×1 , and assume there ∃  a state observer with globally 

exponential stable error dynamics, then the estimated state 𝐱𝐱�(𝑡𝑡)  converges 

exponentially fast to the state 𝐱𝐱(𝑡𝑡). 

A special situation is when the state transformation is selected as 

𝐓𝐓𝑥𝑥�𝐱𝐱(𝑡𝑡)� = �
𝐱𝐱

𝐓𝐓𝑎𝑎�𝐱𝐱(𝑡𝑡)��                    (2.20) 

where 𝐓𝐓𝑎𝑎 ∶  𝐑𝐑𝑛𝑛×1 → 𝐑𝐑(𝑝𝑝−𝑛𝑛)×1, and this state transformation is injective and satisfied 

the inequality specified in Eq. (2.16). 

2.4.5 Observability of Linear Systems 

Linear dynamic systems are special cases of nonlinear dynamic systems in the form of 

�
𝐰̇𝐰(𝑡𝑡) = 𝐀𝐀(𝑡𝑡)𝐰𝐰(𝑡𝑡) + 𝐁𝐁(𝑡𝑡)𝐯𝐯(𝑡𝑡)

𝐳𝐳(𝑡𝑡) = 𝐂𝐂(𝑡𝑡)𝐰𝐰(𝑡𝑡)
𝐰𝐰(𝑡𝑡0) = 𝐰𝐰0

                (2.21) 

𝐰𝐰(𝑡𝑡) ∈ 𝐑𝐑𝑝𝑝×1, 𝐯𝐯(𝑡𝑡) ∈ 𝐑𝐑𝑚𝑚×1, 𝐳𝐳(𝑡𝑡) ∈ 𝐑𝐑𝑞𝑞×1, then the linear state Eq. (2.18) is observable 

on [𝑡𝑡0, 𝑡𝑡𝑓𝑓] if and only if the 𝑛𝑛 × 𝑛𝑛 matrix  

𝐌𝐌�𝑡𝑡0, 𝑡𝑡𝑓𝑓� = ∫ 𝚽𝚽𝑇𝑇(𝑡𝑡, 𝑡𝑡0)𝐂𝐂𝑇𝑇(𝑡𝑡)𝐂𝐂(𝑡𝑡)𝚽𝚽(𝑡𝑡, 𝑡𝑡0)𝑑𝑑𝑑𝑑𝑡𝑡𝑓𝑓
𝑡𝑡0

          (2.22) 

is invertible, as proved in [12]. 

2.4.6 Stability of State Observer 

If the linear time-varying system specified in Eq. (2.18) is uniformly complete 

observable, then the Kalman-Bucy filter used in the design of a state observer is globally 

exponentially stable [13] and [14], which requires that given 𝑡𝑡0, for ∀ Δ𝑇𝑇 > 0, 

𝐌𝐌(𝑡𝑡0, 𝑡𝑡0 + Δ𝑇𝑇) = ∫ 𝚽𝚽𝑇𝑇(𝑡𝑡, 𝑡𝑡0)𝐂𝐂𝑇𝑇(𝑡𝑡)𝐂𝐂(𝑡𝑡)𝚽𝚽(𝑡𝑡, 𝑡𝑡0)𝑑𝑑𝑑𝑑𝑡𝑡0+Δ𝑇𝑇
𝑡𝑡0

      (2.23) 

is invertible. 

2.5 IMPORTANT INEQUALITIES 

2.5.1 Young’s inequality 

As explained in [9], a special case of Young’s inequality is: 

𝑎𝑎𝑎𝑎 ≤ 𝑎𝑎2

2𝜀𝜀
+ 𝜀𝜀𝜀𝜀2

2
                       (2.24) 

where 𝑎𝑎, 𝑏𝑏 ≥ 0, and 𝜀𝜀 is any positive constant. 
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2.5.2 Gronwall-Bellman inequality 

As explained in [9], suppose that ϕ(𝑡𝑡) and ν(𝑡𝑡) are continuous functions defined for 

𝑡𝑡 ≥ 𝑡𝑡0  with ν(𝑡𝑡) ≥ 0 for 𝑡𝑡 ≥ 𝑡𝑡0 , and suppose Ψ is a constant. Then the implicit 

inequality 

ϕ(𝑡𝑡) ≤ Ψ + ∫ ν(𝜎𝜎)𝑡𝑡
𝑡𝑡0

ϕ(𝜎𝜎)𝑑𝑑𝑑𝑑,        𝑡𝑡 ≥ 𝑡𝑡0          (2.25) 

implies the explicit inequality 

ϕ(𝑡𝑡) ≤ Ψ𝑒𝑒∫ ν(𝜎𝜎)𝑡𝑡
𝑡𝑡0

𝑑𝑑𝑑𝑑 ,        𝑡𝑡 ≥ 𝑡𝑡0             (2.26) 
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Chapter 3 VEHICLE MODEL  

3.1 PHYSICAL MODEL 

 
Figure 1. Quadrotor platform 

 

The mini quadrotor is shown in figure 1. The quadrotor has four propellers located at 

each end of the four extended arms and they are driven by four motors that provides 

different rotating speeds. Results in fluid dynamics suggest that the air undergoes 

pressure change from above the propellers to the beneath of them and hence the 

propellers are acted with air dynamic forces that maintain the overall stable motion of 

the quadrotor. The central controlling unit is located at the center of the quadrotor along 

with batteries. The mass of the total system is usually known by measurement in 

advance. It is also observed that the quadrotor represents geometric symmetry with 

respect to its center. Hence, inertia quantities of it can be simplified and measured. 

 

However, uneven mass distribution of the quadrotor, like the one in figure 1 caused by 

the asymmetric part of an undercarriage, can be observed. And the thrust produced by 

the propellers is not ideally perpendicular with respect to the surface of the propellers 

due to the complicated air dynamics in the surroundings of the quadrotor. These 

imperfections lead to the following problems: 

(1) the inertia matrix is not diagonal; 

(2) the thrust force can have different orientations during a motion. 
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3.2 SIMPLIFICATION OF THE PHYSICAL MODEL 

The two problems addressed above show imperfections of the physical model when 

mathematical model is desired for calculations. The following assumptions are based 

on empirical observations: 

(1) The center of mass is located on the center of the quadrotor; 

(2) The inertia matrix is diagonal with respect to the center of mass; 

(3) The force produced by propellers are perpendicular to the surface of the propellers 

and thus the total thrust can be seen acting on the center of mass. 

 
Figure 2. Quadrotor setup 

3.3 MATHEMATICAL MODEL 

The quadrotor was modeled as a rigid body with a body frame {𝐵𝐵} attached to the 

center of the quadrotor with its z-axis perpendicular the surface of the four propellers. 

Forces produced by the four propellers were equivalent to a single thrust acting on the 

center of mass along the z-axis in the body frame. The gravity vector was along the 

negative z-axis in the Earth frame {𝐸𝐸}, which is a fixed inertia frame. 

 

Denote the linear position of the center of mass as 𝐏𝐏𝐸𝐸 ∈ 𝐑𝐑3×1 with respect to {𝐸𝐸},  

and 𝐏𝐏𝐵𝐵 ∈ 𝐑𝐑3×1 with respect to {𝐵𝐵}, the rotational matrix 𝐑𝐑𝐵𝐵𝐸𝐸 ∈ SO(3) that satisfied 

𝐏𝐏𝐸𝐸 = 𝐏𝐏𝐸𝐸 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 + 𝐑𝐑 𝐏𝐏𝐵𝐵𝐵𝐵
𝐸𝐸                     (3.1) 

x 

y 

z 

{B} 

{E} 
 

T 

G 

b 
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y 
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Then the linear velocity of the center of mass 𝐕𝐕𝐵𝐵 ∈ 𝐑𝐑3×1 with respect to {𝐵𝐵} can be 

defined as: 

𝐕𝐕𝐵𝐵 = � 𝑑𝑑𝐸𝐸

𝑑𝑑𝑑𝑑
𝐏𝐏𝐸𝐸 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵� =

𝐵𝐵
� 𝑑𝑑𝐸𝐸

𝑑𝑑𝑑𝑑
𝐏𝐏𝐸𝐸 � = 𝐑𝐑𝐸𝐸𝐵𝐵

𝐵𝐵
𝐏̇𝐏𝐸𝐸              (3.2) 

Denote the angular velocity in {𝐵𝐵} as 𝛚𝛚𝐵𝐵 ∈ 𝐑𝐑3×1. The rotational matrix 𝐑𝐑𝐵𝐵𝐸𝐸  was an 

orthonormal one which had the property 

𝐑̇𝐑𝐵𝐵𝐸𝐸 = 𝐑𝐑𝐵𝐵𝐸𝐸 𝐒𝐒( 𝛚𝛚𝐵𝐵 )                        (3.3) 

where 𝐒𝐒(∙) yielded a skew symmetric matrix that verifies 

𝐒𝐒(𝐱𝐱)𝐲𝐲 = 𝐱𝐱 × 𝐲𝐲        𝐱𝐱, 𝐲𝐲 ∈ 𝐑𝐑3×1        (3.4) 

Denote the thrust as 𝐓𝐓𝐵𝐵 = 𝑇𝑇𝐵𝐵 𝐞𝐞3 ∈ 𝐑𝐑3×1 , 𝐛𝐛 ∈ 𝐑𝐑3×1𝐸𝐸 , 𝐆𝐆 = 𝑚𝑚𝑚𝑚𝐞𝐞3 ∈ 𝐑𝐑3×1𝐸𝐸  with 

𝐞𝐞3 = �
0
0
1
�. The net force acting on the quadrotor was  

𝐅𝐅 = − 𝐑𝐑𝐵𝐵𝐸𝐸 𝐓𝐓𝐵𝐵 +𝐸𝐸 𝑚𝑚𝑚𝑚𝐞𝐞3 + 𝐛𝐛𝐸𝐸                    (3.5) 

𝐅𝐅 = − 𝐓𝐓𝐵𝐵𝐵𝐵 + 𝑚𝑚𝑚𝑚 𝐑𝐑𝐸𝐸𝐵𝐵 𝐞𝐞3 + 𝐑𝐑𝐸𝐸𝐵𝐵 𝐛𝐛𝐸𝐸                   (3.6) 

According to Newton’s Law of motion: 

𝐅𝐅 = 𝑚𝑚𝐸𝐸 𝐏̈𝐏𝐸𝐸                           (3.7) 

𝐅𝐅 = 𝑚𝑚𝐸𝐸 𝑑𝑑
𝑑𝑑𝑑𝑑

( 𝐑𝐑 𝐕𝐕𝐵𝐵 )𝐵𝐵
𝐸𝐸                        (3.8) 

𝐅𝐅 = 𝑚𝑚𝐸𝐸 ( 𝐑̇𝐑 𝐕𝐕 + 𝐑𝐑 𝐕̇𝐕𝐵𝐵𝐵𝐵
𝐸𝐸 )𝐵𝐵

𝐵𝐵
𝐸𝐸                     (3.9) 

𝐅𝐅 = 𝑚𝑚𝐸𝐸 [ 𝐑𝐑𝐵𝐵𝐸𝐸 𝐒𝐒( 𝛚𝛚𝐵𝐵 ) 𝐕𝐕 + 𝐑𝐑 𝐕̇𝐕𝐵𝐵𝐵𝐵
𝐸𝐸 ]𝐵𝐵                  (3.10) 

𝐑𝐑𝐸𝐸𝐵𝐵 𝐅𝐅 = 𝑚𝑚𝐸𝐸 ( 𝛚𝛚𝐵𝐵 × 𝐕𝐕 + 𝐕̇𝐕𝐵𝐵 )𝐵𝐵                   (3.11) 

𝐅𝐅 = 𝑚𝑚𝐵𝐵 ( 𝛚𝛚𝐵𝐵 × 𝐕𝐕 + 𝐕̇𝐕𝐵𝐵 )𝐵𝐵                    (3.12) 

𝑚𝑚 𝐕̇𝐕𝐵𝐵 = −𝑚𝑚 𝛚𝛚𝐵𝐵 × 𝐕𝐕 + 𝐅𝐅𝐵𝐵𝐵𝐵                   (3.13) 

𝐕̇𝐕𝐵𝐵 = −𝐒𝐒( 𝛚𝛚𝐵𝐵 ) 𝐕𝐕 + 1
𝑚𝑚

𝐅𝐅𝐵𝐵𝐵𝐵                    (3.14) 

replacing by 𝐅𝐅𝐵𝐵  by specific forces in Eq. (3.5) 

𝐕̇𝐕𝐵𝐵 = −𝐒𝐒( 𝛚𝛚𝐵𝐵 ) 𝐕𝐕 + 1
𝑚𝑚

(− 𝐓𝐓𝐵𝐵 + 𝑚𝑚𝑚𝑚 𝐑𝐑𝐸𝐸𝐵𝐵 𝐞𝐞3 + 𝐑𝐑𝐸𝐸𝐵𝐵 𝐛𝐛𝐸𝐸 )𝐵𝐵           (3.15) 

𝐕̇𝐕𝐵𝐵 = −𝐒𝐒( 𝛚𝛚𝐵𝐵 ) 𝐕𝐕 − 1
𝑚𝑚

𝐓𝐓𝐵𝐵 + 𝑔𝑔 𝐑𝐑𝐸𝐸𝐵𝐵 𝐞𝐞3 + 1
𝑚𝑚

𝐑𝐑𝐸𝐸𝐵𝐵 𝐛𝐛𝐸𝐸𝐵𝐵            (3.16) 

Denote 𝐈𝐈𝐵𝐵 ∈ 𝐑𝐑3×3  to be the inertia matrix, and Euler’s equation related angular 

velocity 𝛚𝛚𝐵𝐵  with 𝐈𝐈𝐵𝐵  and the torque 𝐧𝐧𝐵𝐵 ∈ 𝐑𝐑3×1 as followed 

𝛕𝛕𝐵𝐵 = 𝛚̇𝛚 + 𝛚𝛚𝐵𝐵 × ( 𝐈𝐈𝐵𝐵 × 𝛚𝛚𝐵𝐵 )𝐵𝐵                  (3.17) 

𝛚̇𝛚𝐵𝐵 = − 𝐈𝐈𝐵𝐵 −1𝐒𝐒� 𝛚𝛚𝐵𝐵 � 𝐈𝐈𝐵𝐵 𝛚𝛚𝐵𝐵 + 𝐈𝐈𝐵𝐵 −1 𝐧𝐧𝐵𝐵               (3.18) 

Summing up equations through (3.1) to (3.17) 
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⎩
⎪
⎨

⎪
⎧ 𝐑̇𝐑𝐵𝐵𝐸𝐸 = 𝐑𝐑𝐵𝐵𝐸𝐸 𝐒𝐒( 𝛚𝛚𝐵𝐵 )

𝐏̇𝐏𝐸𝐸 = 𝐑𝐑𝐵𝐵𝐸𝐸 𝐕𝐕𝐵𝐵

𝐕̇𝐕𝐵𝐵 = −𝐒𝐒( 𝛚𝛚𝐵𝐵 ) 𝐕𝐕 − 1
𝑚𝑚

𝐓𝐓𝐵𝐵 + 𝑔𝑔 𝐑𝐑𝐸𝐸𝐵𝐵 𝐞𝐞3 + 1
𝑚𝑚

𝐑𝐑𝐸𝐸𝐵𝐵 𝐛𝐛𝐸𝐸𝐵𝐵

𝛚̇𝛚𝐵𝐵 = − 𝐈𝐈𝐵𝐵 −1𝐒𝐒� 𝛚𝛚𝐵𝐵 � 𝐈𝐈𝐵𝐵 𝛚𝛚𝐵𝐵 + 𝐈𝐈𝐵𝐵 −1 𝐧𝐧𝐵𝐵

       (3.19) 

In this work, the specific quadrotor was actuated in thrust 𝐓𝐓𝐵𝐵  and angular velocity 

𝛚𝛚𝐵𝐵 . Meanwhile, Eq. (3.19) could be simplified by the input transform 𝐧𝐧𝐵𝐵 = 𝐈𝐈𝐵𝐵 𝛕𝛕𝐵𝐵 +

𝐒𝐒� 𝛚𝛚𝐵𝐵 � 𝐈𝐈𝐵𝐵 𝛚𝛚𝐵𝐵 , given that the control in angular velocity 𝛚𝛚𝐵𝐵  was available. 

⎩
⎪
⎨

⎪
⎧ 𝐑̇𝐑𝐵𝐵𝐸𝐸 = 𝐑𝐑𝐵𝐵𝐸𝐸 𝐒𝐒( 𝛚𝛚𝐵𝐵 )

𝐏̇𝐏𝐸𝐸 = 𝐑𝐑𝐵𝐵𝐸𝐸 𝐕𝐕𝐵𝐵

𝐕̇𝐕𝐵𝐵 = −𝐒𝐒( 𝛚𝛚𝐵𝐵 ) 𝐕𝐕 − 1
𝑚𝑚

𝐓𝐓𝐵𝐵 + 𝑔𝑔 𝐑𝐑𝐸𝐸𝐵𝐵 𝐞𝐞3 + 1
𝑚𝑚

𝐑𝐑𝐸𝐸𝐵𝐵 𝐛𝐛𝐸𝐸𝐵𝐵

𝛚̇𝛚𝐵𝐵 = 𝛕𝛕𝐵𝐵

       (3.20) 

Then, transforming the Eq. (3.20) into the form of Eq. (2.13), one can get 

�
𝐱̇𝐱(𝑡𝑡) = 𝒇𝒇(𝐱𝐱(𝑡𝑡),𝐮𝐮(𝑡𝑡))
𝐲𝐲(𝑡𝑡) = 𝒉𝒉�𝐱𝐱(𝑡𝑡),𝐮𝐮(𝑡𝑡)� ,        𝐱𝐱(𝑡𝑡0) = 𝐱𝐱0  (3.21) 

where  𝐱𝐱(𝑡𝑡) = 𝐏𝐏𝐸𝐸 ∈ 𝐑𝐑3×1 , 𝐮𝐮(𝑡𝑡) = �
𝐓𝐓𝐵𝐵

𝛚𝛚𝐵𝐵
� ∈ 𝐑𝐑6×1  or 𝐮𝐮(𝑡𝑡) = �

𝐓𝐓𝐵𝐵

𝛕𝛕𝐵𝐵
� ∈ 𝐑𝐑6×1 , 𝐲𝐲(𝑡𝑡) =

𝐱𝐱(𝑡𝑡) ∈ 𝐑𝐑6×1, 𝐱𝐱0 = 𝐏𝐏𝐸𝐸 (𝑡𝑡0) ∈ 𝐑𝐑3×1. 

3.4 MODEL WITH OPEN LOOP DESIGN AND FULL STATE OBSERVATION 

The model in Matlab/Simulink environment was built as shown in the following 

figure: 

 
Figure 3. Open loop model 

 

The open loop model was constructed with the Eq. (3.20) that described the overall 

dynamics of the quadrotor. The nonlinear behavior of the dynamics triggered the use of 

function block in Simulink, which allowed convenient coding and better visualization 

of the model. 
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The mass of the quadrotor was assumed to be known at this stage, with 𝑚𝑚 = 0.206 kg. 

And the gravity was set to the local gravity near the ground of 𝑔𝑔 = 9.7877 m/s2 [15]. 

The actuation quantities were set to 𝐓𝐓𝐵𝐵 = �
0
0
1
� Newton, 𝛕𝛕𝐵𝐵 = �

0.1
0.1
0.1

� rad/s2, 𝐑𝐑𝐸𝐸𝐵𝐵 (𝑡𝑡0) =

�
1 0 0
0 1 0
0 0 1

�, and 𝐛𝐛𝐸𝐸 = �
0.3
0.2
0.1

� Newton. And the initial conditions were 𝐕𝐕(𝑡𝑡0) = �
0
0
0
�𝐵𝐵  

m/s, 𝐏𝐏𝐸𝐸 (𝑡𝑡0) = �
0
0
−1

� m. The simulation result was shown in the following figure: 

 
Figure 4. Simulation of open loop model 

 

The visualization of quadrotor in figure 4 specified the top surface of the quadrotor with 

white color, the bottom surface as black (not visible in the figure 4), and four propellers 

were simplified with four outstretched arms colored with light blue and light pink. 

The simulation result met the expectation with the given input, where the quadrotor was 

gradually lifted at the beginning of the motion due to a bigger thrust than gravitational 

force. And it was rotated clockwise around each axes of the body frame. 
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Chapter 4 OBSERVER DESIGN 

This section dealt with the situation when full state observation was not available and 

thus should be observed through the use of an observer. As stated in the Chapter 2, the 

observer used in the work was one with Kalman-Bucy filter. This required a 

corresponding LTV (linear time-varying) dynamic system to be observed. The first part 

of this section simplified the observation problem by ignoring the external force 

disturbances. The second part of the section checked and transformed the nonlinear 

dynamic system described in Eq. (3.20) into a linear time varying system that mimicked 

exacted the behavior of the nonlinear dynamic system. 

4.1 OBSERVER DESIGN WITH UNKNOWN MASS BUT NO EXTERNAL 

FORCE DISTURBANCE 

As a trial, the mass of the quadrotor 𝑚𝑚 was unknown and the external force disturbance 

𝐛𝐛𝐸𝐸  was assumed to be zero. Then the Eq. (3.20) became 

⎩
⎪
⎨

⎪
⎧ 𝐑̇𝐑𝐵𝐵𝐸𝐸 = 𝐑𝐑𝐵𝐵𝐸𝐸 𝐒𝐒( 𝛚𝛚𝐵𝐵 )

𝐏̇𝐏𝐸𝐸 = 𝐑𝐑𝐵𝐵𝐸𝐸 𝐕𝐕𝐵𝐵

𝐕̇𝐕𝐵𝐵 = −𝐒𝐒( 𝛚𝛚𝐵𝐵 ) 𝐕𝐕 − 1
𝑚𝑚

𝐓𝐓𝐵𝐵 + 𝑔𝑔 𝐑𝐑𝐸𝐸𝐵𝐵 𝐞𝐞3𝐵𝐵

𝛚̇𝛚𝐵𝐵 = 𝛕𝛕𝐵𝐵

             (4.1) 

Naturally, an additional state 𝑚𝑚 should be added in the above equation but the resulting 

system was nonlinear in state variables. Notice that 1
𝑚𝑚

 was linear with state variables, 

one can get 

�
𝐕̇𝐕𝐵𝐵

𝛚̇𝛚𝐵𝐵
𝑑𝑑
𝑑𝑑𝑑𝑑

( 1
𝑚𝑚

)
� = �𝟎𝟎𝟑𝟑×𝟔𝟔 − 𝐓𝐓𝐵𝐵

𝟎𝟎𝟒𝟒×𝟔𝟔 𝟎𝟎𝟒𝟒×𝟏𝟏
� �

𝐕𝐕𝐵𝐵

𝛚𝛚𝐵𝐵

( 1
𝑚𝑚

)
� + �

−𝐒𝐒� 𝛚𝛚𝐵𝐵 � 𝐕𝐕𝐵𝐵 + 𝑔𝑔 𝐑𝐑𝑇𝑇𝐞𝐞3𝐵𝐵
𝐸𝐸

𝛕𝛕𝐵𝐵

0
�     (4.2) 

Define a state variable 𝐱𝐱(𝑡𝑡) = �
𝐕𝐕𝐵𝐵

𝛚𝛚𝐵𝐵
� ∈ 𝐑𝐑6×1. Assume that the linear velocity and the 

angular velocity can be observed (angular velocity equaled to the controlling variable 

𝛕𝛕𝐵𝐵 ), then an output variable 𝐲𝐲(𝑡𝑡) = �
𝐕𝐕𝐵𝐵

𝛚𝛚𝐵𝐵
� ∈ 𝐑𝐑6×1 can be defined. Hence the Eq. (4.2) 

became 
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⎩
⎨

⎧
�

𝐱̇𝐱
𝑑𝑑
𝑑𝑑𝑑𝑑

( 1
𝑚𝑚

)� = �𝟎𝟎𝟑𝟑×𝟔𝟔 − 𝐓𝐓𝐵𝐵

𝟎𝟎𝟒𝟒×𝟔𝟔 𝟎𝟎𝟒𝟒×𝟏𝟏
� �

𝐱𝐱
( 1
𝑚𝑚

)� + �
−𝐒𝐒� 𝛚𝛚𝐵𝐵 � 𝐕𝐕𝐵𝐵 + 𝑔𝑔 𝐑𝐑𝑇𝑇𝐞𝐞3𝐵𝐵

𝐸𝐸

𝛕𝛕𝐵𝐵

0
�

𝐲𝐲(𝑡𝑡) = 𝐈𝐈𝟔𝟔𝐱𝐱(𝑡𝑡)

      (4.3) 

Consider the state and output transformation described in Eq. (2.17) and (2.14), define 

the two transformations as  

�
𝐓𝐓𝑥𝑥�𝐱𝐱(𝑡𝑡)� = �

𝐱𝐱(𝑡𝑡)
( 1
𝑚𝑚

) �

𝐓𝐓𝑦𝑦�𝐲𝐲(𝑡𝑡)� = 𝐈𝐈𝟔𝟔𝐲𝐲(𝑡𝑡)
                       (4.4) 

and let new state variables 𝐰𝐰(𝑡𝑡) = 𝐓𝐓𝑥𝑥�𝐱𝐱(𝑡𝑡)�  and 𝐳𝐳(𝑡𝑡) = 𝐓𝐓𝑦𝑦�𝐲𝐲(𝑡𝑡)� . The overall 

system now has the dynamics in the form like that of Eq. (2.18). 

⎩
⎪
⎪
⎨

⎪
⎪
⎧
𝐰̇𝐰 = �𝟎𝟎𝟔𝟔×𝟔𝟔 �− 𝐓𝐓𝐵𝐵

𝟎𝟎𝟑𝟑×𝟏𝟏
�

𝟎𝟎𝟏𝟏×𝟔𝟔 0
�𝐰𝐰 + �

−𝐒𝐒� 𝛚𝛚𝐵𝐵 � 𝐕𝐕𝐵𝐵 + 𝑔𝑔 𝐑𝐑𝑇𝑇𝐞𝐞3𝐵𝐵
𝐸𝐸

𝛕𝛕𝐵𝐵

0
�

𝐳𝐳 = [𝐈𝐈𝟔𝟔 𝟎𝟎𝟔𝟔×𝟏𝟏]𝐰𝐰

𝐰𝐰(𝑡𝑡0) = �
𝐕𝐕(𝑡𝑡0)𝐵𝐵

𝛚𝛚𝐵𝐵 (𝑡𝑡0)
0

�

          (4.5) 

Define 𝐀𝐀(𝑡𝑡) = �𝟎𝟎𝟔𝟔×𝟔𝟔 �− 𝐓𝐓𝐵𝐵
𝟎𝟎𝟑𝟑×𝟏𝟏

�

𝟎𝟎𝟏𝟏×𝟔𝟔 0
�, 𝐂𝐂(𝑡𝑡) = [𝐈𝐈𝟔𝟔 𝟎𝟎𝟔𝟔×𝟏𝟏]. To guarantee the nonlinear system 

described in Eq. (4.1) was observable, one should check the observability of the 

resulting linear time-varying system described in Eq. (4.5) on time interval [𝑡𝑡0, 𝑡𝑡𝑓𝑓] by 

calculating the observability matrix defined in Eq. (2.19). Note that the transition matrix 

𝚽𝚽(𝑡𝑡, 𝑡𝑡0) = 𝐈𝐈 + ∫ 𝐀𝐀(𝜎𝜎1)𝑡𝑡𝑓𝑓
𝑡𝑡0

𝑑𝑑σ1 + ∫ 𝐀𝐀(𝜎𝜎1)𝑡𝑡𝑓𝑓
𝑡𝑡0

∫ 𝐀𝐀(𝜎𝜎2)𝜎𝜎1
𝜎𝜎2

𝑑𝑑σ2𝑑𝑑σ1 +

  ∫ 𝐀𝐀(𝜎𝜎1)𝑡𝑡𝑓𝑓
𝑡𝑡0

∫ 𝐀𝐀(𝜎𝜎2)𝜎𝜎1
𝜎𝜎2

∫ 𝐀𝐀(𝜎𝜎3)𝜎𝜎2
𝜎𝜎3

𝑑𝑑σ3𝑑𝑑σ2𝑑𝑑σ1 + ⋯, Then 

𝚽𝚽(𝑡𝑡, 𝑡𝑡0) = 𝐈𝐈 + ∫ 𝐀𝐀(𝜎𝜎)𝑡𝑡𝑓𝑓
𝑡𝑡0

𝑑𝑑𝑑𝑑 = � 𝐈𝐈𝟔𝟔 �
−∫ 𝐓𝐓𝐵𝐵𝑡𝑡𝑓𝑓

𝑡𝑡0
𝑑𝑑𝑑𝑑

𝟎𝟎𝟑𝟑×𝟏𝟏
�

𝟎𝟎𝟏𝟏×𝟔𝟔 1
�          (4.6) 

𝐌𝐌�𝑡𝑡0, 𝑡𝑡𝑓𝑓� = ∫ 𝚽𝚽𝑇𝑇(𝑡𝑡, 𝑡𝑡0)𝐂𝐂𝑇𝑇(𝑡𝑡)𝐂𝐂(𝑡𝑡)𝚽𝚽(𝑡𝑡, 𝑡𝑡0)𝑑𝑑𝑑𝑑𝑡𝑡𝑓𝑓
𝑡𝑡0

            (4.7) 

𝐌𝐌�𝑡𝑡0, 𝑡𝑡𝑓𝑓� = ∫ �
𝐈𝐈𝟔𝟔

�−∫ 𝐓𝐓𝑇𝑇𝐵𝐵𝑡𝑡𝑓𝑓
𝑡𝑡0

𝑑𝑑𝑑𝑑 𝟎𝟎𝟏𝟏×𝟑𝟑�
� �𝐈𝐈𝟔𝟔  �

−∫ 𝐓𝐓𝐵𝐵𝑡𝑡𝑓𝑓
𝑡𝑡0

𝑑𝑑𝑑𝑑

𝟎𝟎𝟑𝟑×𝟏𝟏
�� 𝑑𝑑𝑑𝑑𝑡𝑡𝑓𝑓

𝑡𝑡0
       (4.8) 

Denote 𝐊𝐊𝟔𝟔×𝟏𝟏 = �
− ∫ 𝐓𝐓𝐵𝐵𝑡𝑡𝑓𝑓

𝑡𝑡0
𝑑𝑑𝑑𝑑

𝟎𝟎𝟑𝟑×𝟏𝟏
�, one can get 
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𝐌𝐌�𝑡𝑡0, 𝑡𝑡𝑓𝑓� = ∫ �
𝐈𝐈𝟔𝟔 𝐊𝐊𝟔𝟔×𝟏𝟏

𝐊𝐊𝑇𝑇
𝟏𝟏×𝟔𝟔 𝐊𝐊𝑇𝑇

𝟏𝟏×𝟔𝟔𝐊𝐊𝟔𝟔×𝟏𝟏
� 𝑑𝑑𝑑𝑑𝑡𝑡𝑓𝑓

𝑡𝑡0
              (4.9) 

which satisfied 𝐌𝐌𝑇𝑇�𝑡𝑡0, 𝑡𝑡𝑓𝑓� = 𝐌𝐌�𝑡𝑡0, 𝑡𝑡𝑓𝑓�, now introduce a unit vector 𝐪𝐪� ∈ 𝐑𝐑7×1, and 

consider the quadratic form 

𝐐𝐐 = 𝐪𝐪�𝑇𝑇𝐌𝐌�𝑡𝑡0, 𝑡𝑡𝑓𝑓�𝐪𝐪�                        (4.9) 

𝐐𝐐 was positive definite if and only if all the principal minors were non-singular. Thus, 

if 𝐐𝐐 was positive definite, then 𝐌𝐌�𝑡𝑡0, 𝑡𝑡𝑓𝑓� was invertible. Expand the expression (4.9) 

𝐐𝐐 = 𝐪𝐪�𝑇𝑇 ∫ �
𝐈𝐈𝟔𝟔

𝐊𝐊𝑇𝑇
𝟏𝟏×𝟔𝟔

� [𝐈𝐈𝟔𝟔 𝐊𝐊𝟔𝟔×𝟏𝟏]𝑑𝑑𝑑𝑑𝑡𝑡𝑓𝑓
𝑡𝑡0

𝐪𝐪�                 (4.10) 

𝐐𝐐 = ∫ 𝐪𝐪�𝑇𝑇 �
𝐈𝐈𝟔𝟔

𝐊𝐊𝑇𝑇
𝟏𝟏×𝟔𝟔

� [𝐈𝐈𝟔𝟔 𝐊𝐊𝟔𝟔×𝟏𝟏]𝐪𝐪�𝑑𝑑𝑑𝑑𝑡𝑡𝑓𝑓
𝑡𝑡0

                 (4.11) 

The induced norm of the matrix 𝐊𝐊 ∈ 𝐑𝐑𝑚𝑚×𝑛𝑛 was defined as 

‖𝐊𝐊‖ ≜ 𝑚𝑚𝑚𝑚𝑚𝑚‖𝐊𝐊𝐊𝐊‖     ∃𝐪𝐪 ∈ 𝐑𝐑𝑛𝑛×1, ‖𝐪𝐪‖ = 1 (4.12) 

Hence, let the 𝐪𝐪�  be such that the induced norm of a matrix is defined. Then the 

quadratic form can be written as 

𝐐𝐐 = ∫ ‖[𝐈𝐈𝟔𝟔 𝐊𝐊𝟔𝟔×𝟏𝟏]‖2𝑑𝑑𝑑𝑑𝑡𝑡𝑓𝑓
𝑡𝑡0

                    (4.13) 

𝐐𝐐 = ∫ ‖[𝐈𝐈𝟔𝟔 𝐊𝐊𝟔𝟔×𝟏𝟏]𝐪𝐪�‖2𝑑𝑑𝑑𝑑𝑡𝑡𝑓𝑓
𝑡𝑡0

                    (4.14) 

If 𝐌𝐌�𝑡𝑡0, 𝑡𝑡𝑓𝑓� was not invertible, then 𝐐𝐐 = 0, and 

∫ ‖[𝐈𝐈𝟔𝟔 𝐊𝐊𝟔𝟔×𝟏𝟏]𝐪𝐪�‖2𝑑𝑑𝑑𝑑𝑡𝑡𝑓𝑓
𝑡𝑡0

= 0                    (4.15) 

‖[𝐈𝐈𝟔𝟔 𝐊𝐊𝟔𝟔×𝟏𝟏]𝐪𝐪�‖ = 0                      (4.16) 

Let 𝐪𝐪� = �
𝐪𝐪𝟏𝟏
𝑞𝑞2�, then 

𝐪𝐪𝟏𝟏 + 𝐊𝐊𝟔𝟔×𝟏𝟏𝑞𝑞2 = 𝟎𝟎                      (4.17) 

𝐪𝐪𝟏𝟏 + �
−∫ 𝐓𝐓𝐵𝐵𝑡𝑡𝑓𝑓

𝑡𝑡0
𝑑𝑑𝑑𝑑

𝟎𝟎𝟑𝟑×𝟏𝟏
� 𝑞𝑞2 = 𝟎𝟎                    (4.18) 

Setting 𝑡𝑡𝑓𝑓 = 𝑡𝑡0, then 𝐪𝐪𝟏𝟏 = 𝟎𝟎. Hence 

�∫
𝐓𝐓𝐵𝐵𝑡𝑡𝑓𝑓

𝑡𝑡0
𝑑𝑑𝑑𝑑

𝟎𝟎𝟑𝟑×𝟏𝟏
� 𝑞𝑞2 = 𝟎𝟎                     (4.19) 

∫ 𝐓𝐓𝐵𝐵𝑡𝑡𝑓𝑓
𝑡𝑡0

𝑑𝑑𝑑𝑑𝑞𝑞2 = 𝟎𝟎                      (4.20) 

∫ 𝑇𝑇𝐵𝐵𝑡𝑡𝑓𝑓
𝑡𝑡0

𝑑𝑑𝑑𝑑𝑞𝑞2 = 0                      (4.21) 

Thus, if no 𝑞𝑞2 ∈ 𝐑𝐑\{0} can be found that satisfies the condition in Eq. (4.21), the 

observability matrix 𝐌𝐌�𝑡𝑡0, 𝑡𝑡𝑓𝑓� was invertible. This implied that The 𝐌𝐌�𝑡𝑡0, 𝑡𝑡𝑓𝑓� was 
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invertible if and only if 𝐓𝐓𝐵𝐵  did not always equal to 𝟎𝟎 on [𝑡𝑡0, 𝑡𝑡𝑓𝑓]. Also, if 𝐓𝐓𝐵𝐵  did not 

always equal to 𝟎𝟎, then given 𝑡𝑡0, for ∀ Δ𝑇𝑇 > 0, 𝐌𝐌(𝑡𝑡0, 𝑡𝑡0 + Δ𝑇𝑇) was invertible. The 

physical meaning of the argument was that the thrust cannot be zero during the whole 

time interval. 

 

In all, the linear time-varying mimicking system was observable and the nonlinear 

system was observable with global stability with Kalman-Bucy filter under the 

condition that 𝐓𝐓𝐵𝐵  was not always 𝟎𝟎 on [𝑡𝑡0, 𝑡𝑡𝑓𝑓]. Observation noise and state noise 

were assumed to be white noises. 

 

The linear time-varying model and the observer were constructed in Simulink 

environment. The same input quantities were applied to the linear time-varying model 

with 𝐓𝐓𝐵𝐵 = �
0
0
2
� Newton and 𝛕𝛕𝐵𝐵 = �

0.1
0.1
0.1

� rad/s2, 𝐑𝐑𝐸𝐸𝐵𝐵 (𝑡𝑡0) = �
1 0 0
0 1 0
0 0 1

�. And the initial 

conditions that served as guesses to the unknown states in the observer were 

𝐕𝐕�(𝑡𝑡0) = �
2
2
2
�𝐵𝐵  m/s, 𝑚𝑚�(𝑡𝑡0) = 0.22 kg, and 𝛚𝛚�(𝑡𝑡0)𝐵𝐵 = �

2
2
2
� rad/s. 

 
Figure 5. LTV model and observer model 

 

The observer received signal from the available measurements of the state, which were 

𝐕𝐕𝐵𝐵  and 𝛚𝛚𝐵𝐵 , as well as the control input 𝐓𝐓𝐵𝐵  and 𝛕𝛕𝐵𝐵 . Then, the observer outputted 

the estimated states that involved not only 𝐕𝐕𝐵𝐵  and 𝛚𝛚𝐵𝐵 , but also the mass 𝑚𝑚. 
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Figure 6. Simulation result of open loop system with observer 

 

As shown in figure 6, all of the error for the estimated states converged to zero in less 

than seconds. For the Kalman-Bucy filter that returned the optimal feedback gain, two 

covariance matrices were defined in advance that reflected the system behavior of 

whether more noise existed in the dynamics of the system or in the observation. Effects 

were shown in the following figures. 

 
Figure 7. Simulation result of different relative noises level 
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The above figure showed that relative higher noise level in the observation than that in 

the state led to slower convergence rate of the error dynamics, which can be explained 

with the implementation of the Kalman-Bucy filter. With the LTV model 

⎩
⎪
⎨

⎪
⎧
𝐰̇𝐰 = 𝐀𝐀𝐰𝐰 + 𝐁𝐁𝐁𝐁 + 𝐩𝐩

𝐳𝐳 = 𝐂𝐂𝐰𝐰 + 𝐪𝐪

𝐰𝐰(𝑡𝑡0) = �
𝐕𝐕(𝑡𝑡0)𝐵𝐵

𝛚𝛚𝐵𝐵 (𝑡𝑡0)
0

�
                       (4.22) 

where 𝐀𝐀(𝑡𝑡) = �𝟎𝟎𝟔𝟔×𝟔𝟔 �− 𝐓𝐓𝐵𝐵
𝟎𝟎𝟑𝟑×𝟏𝟏

�

𝟎𝟎𝟏𝟏×𝟔𝟔 0
� ,  𝐁𝐁(𝑡𝑡)𝐮𝐮(𝒕𝒕) = �

−𝐒𝐒� 𝛚𝛚𝐵𝐵 � 𝐕𝐕𝐵𝐵 + 𝑔𝑔 𝐑𝐑𝑇𝑇𝐞𝐞3𝐵𝐵
𝐸𝐸

𝛕𝛕𝐵𝐵

0
� , 𝐂𝐂(𝑡𝑡) =

[𝐈𝐈𝟔𝟔 𝟎𝟎𝟔𝟔×𝟏𝟏], 𝐰𝐰(𝑡𝑡0)~𝓝𝓝(𝐰𝐰0,𝐏𝐏(𝑡𝑡0) ≻ 0), 𝐩𝐩(𝐭𝐭)~𝓝𝓝(𝟎𝟎,𝐐𝐐(𝑡𝑡) ≽ 0), 𝐪𝐪(𝐭𝐭)~𝓝𝓝(𝟎𝟎,𝐑𝐑(𝑡𝑡) ≻ 0). 

Time dependence (𝑡𝑡) was omitted for convenience. Then the Kalman-Bucy filter was  

⎩
⎨

⎧ 𝐰𝐰�̇ = 𝐀𝐀𝐰𝐰� + 𝐁𝐁𝐁𝐁 + 𝐊𝐊(𝐳𝐳 − 𝐂𝐂𝐂𝐂)
𝐰𝐰�(𝑡𝑡0)~𝓝𝓝(𝐰𝐰0,𝐏𝐏(𝑡𝑡0))

𝐏̇𝐏 = 𝐀𝐀𝐀𝐀 + 𝐏𝐏𝐀𝐀𝑇𝑇 + 𝐐𝐐 − 𝐏𝐏𝐂𝐂𝑇𝑇𝐑𝐑−1𝐂𝐂𝐂𝐂
𝐊𝐊 = 𝐏𝐏𝐂𝐂𝑇𝑇𝐑𝐑−1

                  (4.23) 

As can be inferred from the above equation, a bigger value of 𝐑𝐑 would result in a 

smaller inverse 𝐑𝐑−1 and the optimal Kalman-Bucy gain 𝐊𝐊(𝑡𝑡) would be smaller in the 

sense that the convergence rate would be slower. Hence, the characteristics of the 

Kalman-Bucy filter provided a convenient way of tuning the convergence rate. 

4.2 OBSERVER DESIGN WITH BOTH UNKNOWN MASS AND EXTERNAL 

FORCE DISTURBANCE 

In previous part, observation of the full state variables was proved and simulated to be 

successful. However, the angular velocity was just the integral of the input torque signal. 

Thus, estimation of the angular velocity was unnecessary and should be eliminated from 

the observer. Then the Eq. (3.20) became 

⎩
⎪
⎨

⎪
⎧ 𝐑̇𝐑𝐵𝐵𝐸𝐸 = 𝐑𝐑𝐵𝐵𝐸𝐸 𝐒𝐒( 𝛚𝛚𝐵𝐵 )

𝐏̇𝐏𝐸𝐸 = 𝐑𝐑𝐵𝐵𝐸𝐸 𝐕𝐕𝐵𝐵

𝐕̇𝐕𝐵𝐵 = −𝐒𝐒( 𝛚𝛚𝐵𝐵 ) 𝐕𝐕 − 1
𝑚𝑚

𝐓𝐓𝐵𝐵 + 𝑔𝑔 𝐑𝐑𝐸𝐸𝐵𝐵 𝐞𝐞3 + 1
𝑚𝑚

𝐑𝐑𝐸𝐸𝐵𝐵 𝐛𝐛𝐸𝐸𝐵𝐵

𝛚̇𝛚𝐵𝐵 = 𝛕𝛕𝐵𝐵

          (4.24) 

Notice that 1
𝑚𝑚

 and 𝐛𝐛𝐸𝐸

𝑚𝑚
 was linear with state variables, one can get 
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⎣
⎢
⎢
⎢
⎡ 𝐕̇𝐕𝐵𝐵
𝑑𝑑
𝑑𝑑𝑑𝑑

( 1
𝑚𝑚

)
𝑑𝑑
𝑑𝑑𝑑𝑑

( 𝐛𝐛𝐸𝐸

𝑚𝑚
)⎦
⎥
⎥
⎥
⎤

= �
𝟎𝟎𝟑𝟑×𝟑𝟑 − 𝐓𝐓𝐵𝐵 𝐑𝐑𝑇𝑇𝐵𝐵

𝐸𝐸

𝟎𝟎𝟏𝟏×𝟑𝟑 0 𝟎𝟎𝟏𝟏×𝟑𝟑
𝟎𝟎𝟑𝟑×𝟑𝟑 𝟎𝟎𝟑𝟑×𝟏𝟏 𝟎𝟎𝟑𝟑×𝟑𝟑

�

⎣
⎢
⎢
⎢
⎡ 𝐕𝐕𝐵𝐵

( 1
𝑚𝑚

)

( 𝐛𝐛𝐸𝐸

𝑚𝑚
)⎦
⎥
⎥
⎥
⎤

+ �
−𝐒𝐒� 𝛚𝛚𝐵𝐵 � 𝐕𝐕𝐵𝐵 + 𝑔𝑔 𝐑𝐑𝑇𝑇𝐞𝐞3𝐵𝐵

𝐸𝐸

0
𝟎𝟎𝟑𝟑×𝟏𝟏

�  (4.25) 

Define a state variable 𝐱𝐱(𝑡𝑡) = 𝐕𝐕𝐵𝐵 ∈ 𝐑𝐑3×1 and an output variable 𝐲𝐲(𝑡𝑡) = 𝐕𝐕𝐵𝐵 ∈ 𝐑𝐑3×1 

can be defined. Hence the Eq. (4.25) became 

⎩
⎪
⎨

⎪
⎧

⎣
⎢
⎢
⎡

𝐱̇𝐱
𝑑𝑑
𝑑𝑑𝑑𝑑

( 1
𝑚𝑚

)
𝑑𝑑
𝑑𝑑𝑑𝑑

( 𝐛𝐛𝐸𝐸

𝑚𝑚
)⎦
⎥
⎥
⎤

= �
𝟎𝟎𝟑𝟑×𝟑𝟑 − 𝐓𝐓𝐵𝐵 𝐑𝐑𝑇𝑇𝐵𝐵

𝐸𝐸

𝟎𝟎𝟏𝟏×𝟑𝟑 0 𝟎𝟎𝟏𝟏×𝟑𝟑
𝟎𝟎𝟑𝟑×𝟑𝟑 𝟎𝟎𝟑𝟑×𝟏𝟏 𝟎𝟎𝟑𝟑×𝟑𝟑

� �

𝐱𝐱
( 1
𝑚𝑚

)

( 𝐛𝐛𝐸𝐸

𝑚𝑚
)
�+ �

−𝐒𝐒� 𝛚𝛚𝐵𝐵 � 𝐕𝐕𝐵𝐵 + 𝑔𝑔 𝐑𝐑𝑇𝑇𝐞𝐞3𝐵𝐵
𝐸𝐸

0
𝟎𝟎𝟑𝟑×𝟏𝟏

�

𝐲𝐲(𝑡𝑡) = 𝐈𝐈𝟑𝟑𝐱𝐱(𝑡𝑡)

  (4.26) 

Consider the state and output transformation described in Eq. (2.17) and (2.14), define 

the two transformations as  

⎩
⎪
⎨

⎪
⎧
𝐓𝐓𝑥𝑥�𝐱𝐱(𝑡𝑡)� =

⎣
⎢
⎢
⎢
⎡
𝐱𝐱(𝑡𝑡)
�1
𝑚𝑚
�

( 𝐛𝐛𝐸𝐸

𝑚𝑚
)⎦
⎥
⎥
⎥
⎤

𝐓𝐓𝑦𝑦�𝐲𝐲(𝑡𝑡)� = 𝐈𝐈𝟑𝟑𝐲𝐲(𝑡𝑡)

                       (4.27) 

and let new state variables 𝐰𝐰(𝑡𝑡) = 𝐓𝐓𝑥𝑥�𝐱𝐱(𝑡𝑡)�  and 𝐳𝐳(𝑡𝑡) = 𝐓𝐓𝑦𝑦�𝐲𝐲(𝑡𝑡)� . The overall 

system now has the dynamics in the form like that of Eq. (2.18). 

⎩
⎪⎪
⎨

⎪⎪
⎧
𝐰̇𝐰 = �

𝟎𝟎𝟑𝟑×𝟑𝟑 − 𝐓𝐓𝐵𝐵 𝐑𝐑𝑇𝑇𝐵𝐵
𝐸𝐸

𝟎𝟎𝟏𝟏×𝟑𝟑 0 𝟎𝟎𝟏𝟏×𝟑𝟑
𝟎𝟎𝟑𝟑×𝟑𝟑 𝟎𝟎𝟑𝟑×𝟏𝟏 𝟎𝟎𝟑𝟑×𝟑𝟑

�𝐰𝐰 + �
−𝐒𝐒� 𝛚𝛚𝐵𝐵 � 𝐕𝐕𝐵𝐵 + 𝑔𝑔 𝐑𝐑𝑇𝑇𝐞𝐞3𝐵𝐵

𝐸𝐸

0
𝟎𝟎𝟑𝟑×𝟏𝟏

�

𝐳𝐳 = [𝐈𝐈𝟑𝟑 𝟎𝟎𝟑𝟑×𝟏𝟏 𝟎𝟎𝟑𝟑×𝟑𝟑]𝐰𝐰

𝐰𝐰(𝑡𝑡0) = �
𝐕𝐕(𝑡𝑡0)𝐵𝐵

0
𝟎𝟎

�

    (4.28) 

Define 𝐀𝐀(𝑡𝑡) = �
𝟎𝟎𝟑𝟑×𝟑𝟑 − 𝐓𝐓𝐵𝐵 𝐑𝐑𝑇𝑇𝐵𝐵

𝐸𝐸

𝟎𝟎𝟏𝟏×𝟑𝟑 0 𝟎𝟎𝟏𝟏×𝟑𝟑
𝟎𝟎𝟑𝟑×𝟑𝟑 𝟎𝟎𝟑𝟑×𝟏𝟏 𝟎𝟎𝟑𝟑×𝟑𝟑

� , 𝐂𝐂(𝑡𝑡) = [𝐈𝐈𝟑𝟑 𝟎𝟎𝟑𝟑×𝟏𝟏 𝟎𝟎𝟑𝟑×𝟑𝟑] . To guarantee the 

nonlinear system described in Eq. (4.24) was observable, one should check the 

observability of the resulting linear time-varying system described in Eq. (4.28) on time 

interval [𝑡𝑡0, 𝑡𝑡𝑓𝑓] by calculating the observability matrix defined in Eq. (2.19). Note that 

the transition matrix 𝚽𝚽(𝑡𝑡, 𝑡𝑡0) = 𝐈𝐈 + ∫ 𝐀𝐀(𝜎𝜎1)𝑡𝑡𝑓𝑓
𝑡𝑡0

𝑑𝑑σ1 + ∫ 𝐀𝐀(𝜎𝜎1)𝑡𝑡𝑓𝑓
𝑡𝑡0

∫ 𝐀𝐀(𝜎𝜎2)𝜎𝜎1
𝜎𝜎2

𝑑𝑑σ2𝑑𝑑σ1 +

  ∫ 𝐀𝐀(𝜎𝜎1)𝑡𝑡𝑓𝑓
𝑡𝑡0

∫ 𝐀𝐀(𝜎𝜎2)𝜎𝜎1
𝜎𝜎2

∫ 𝐀𝐀(𝜎𝜎3)𝜎𝜎2
𝜎𝜎3

𝑑𝑑σ3𝑑𝑑σ2𝑑𝑑σ1 + ⋯, Then 
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𝚽𝚽(𝑡𝑡, 𝑡𝑡0) = 𝐈𝐈 + ∫ 𝐀𝐀(𝜎𝜎)𝑡𝑡𝑓𝑓
𝑡𝑡0

𝑑𝑑𝑑𝑑 = �
𝐈𝐈𝟑𝟑 −∫ 𝐓𝐓𝐵𝐵𝑡𝑡𝑓𝑓

𝑡𝑡0
𝑑𝑑𝑑𝑑 ∫ 𝐑𝐑𝑇𝑇𝐵𝐵

𝐸𝐸𝑡𝑡𝑓𝑓
𝑡𝑡0

𝑑𝑑𝑑𝑑

𝟎𝟎𝟏𝟏×𝟑𝟑 1 𝟎𝟎𝟏𝟏×𝟑𝟑
𝟎𝟎𝟑𝟑×𝟑𝟑 𝟎𝟎𝟑𝟑×𝟏𝟏 𝐈𝐈𝟑𝟑

�    (4.29) 

𝐌𝐌�𝑡𝑡0, 𝑡𝑡𝑓𝑓� = ∫ 𝚽𝚽𝑇𝑇(𝑡𝑡, 𝑡𝑡0)𝐂𝐂𝑇𝑇(𝑡𝑡)𝐂𝐂(𝑡𝑡)𝚽𝚽(𝑡𝑡, 𝑡𝑡0)𝑑𝑑𝑑𝑑𝑡𝑡𝑓𝑓
𝑡𝑡0

          (4.30) 

𝐌𝐌�𝑡𝑡0, 𝑡𝑡𝑓𝑓� = ∫ �
𝐈𝐈𝟑𝟑

𝐊𝐊𝑇𝑇
𝟒𝟒×𝟑𝟑

� [𝐈𝐈𝟑𝟑 𝐊𝐊𝟑𝟑×𝟒𝟒]𝑑𝑑𝑑𝑑𝑡𝑡𝑓𝑓
𝑡𝑡0

            (4.31) 

where 𝐊𝐊𝟑𝟑×𝟒𝟒 = �−∫ 𝐓𝐓𝐵𝐵𝑡𝑡𝑓𝑓
𝑡𝑡0

𝑑𝑑𝑑𝑑 ∫ 𝐑𝐑𝑇𝑇𝐵𝐵
𝐸𝐸𝑡𝑡𝑓𝑓

𝑡𝑡0
𝑑𝑑𝑑𝑑�, and one can get 

𝐌𝐌�𝑡𝑡0, 𝑡𝑡𝑓𝑓� = ∫ �
𝐈𝐈𝟑𝟑 𝐊𝐊𝟑𝟑×𝟒𝟒

𝐊𝐊𝑇𝑇
𝟒𝟒×𝟑𝟑 𝐊𝐊𝑇𝑇

𝟒𝟒×𝟑𝟑𝐊𝐊𝟑𝟑×𝟒𝟒
� 𝑑𝑑𝑑𝑑𝑡𝑡𝑓𝑓

𝑡𝑡0
          (4.32) 

which satisfied 𝐌𝐌𝑇𝑇�𝑡𝑡0, 𝑡𝑡𝑓𝑓� = 𝐌𝐌�𝑡𝑡0, 𝑡𝑡𝑓𝑓�, now introduce a unit vector 𝐪𝐪� ∈ 𝐑𝐑7×1, and 

consider the quadratic form 

𝐐𝐐 = 𝐪𝐪�𝑇𝑇𝐌𝐌�𝑡𝑡0, 𝑡𝑡𝑓𝑓�𝐪𝐪�                     (4.33) 

𝐐𝐐 was positive definite if and only if all the principal minors were non-singular. Thus, 

if 𝐐𝐐 was positive definite, then 𝐌𝐌�𝑡𝑡0, 𝑡𝑡𝑓𝑓� was invertible. Expand the expression (4.9) 

𝐐𝐐 = 𝐪𝐪�𝑇𝑇 ∫ �
𝐈𝐈𝟑𝟑

𝐊𝐊𝑇𝑇
𝟒𝟒×𝟑𝟑

� [𝐈𝐈𝟑𝟑 𝐊𝐊𝟑𝟑×𝟒𝟒]𝑑𝑑𝑑𝑑𝑡𝑡𝑓𝑓
𝑡𝑡0

𝐪𝐪�                (4.34) 

𝐐𝐐 = ∫ 𝐪𝐪�𝑇𝑇 �
𝐈𝐈𝟑𝟑

𝐊𝐊𝑇𝑇
𝟒𝟒×𝟑𝟑

� [𝐈𝐈𝟑𝟑 𝐊𝐊𝟑𝟑×𝟒𝟒]𝐪𝐪�𝑑𝑑𝑑𝑑𝑡𝑡𝑓𝑓
𝑡𝑡0

                (4.35) 

The induced norm of the matrix 𝐊𝐊 ∈ 𝐑𝐑𝑚𝑚×𝑛𝑛 was defined as 

‖𝐊𝐊‖ ≜ 𝑚𝑚𝑚𝑚𝑚𝑚‖𝐊𝐊𝐊𝐊‖     ∃𝐪𝐪 ∈ 𝐑𝐑𝑛𝑛×1, ‖𝐪𝐪‖ = 1    (4.36) 

Hence, let the 𝐪𝐪�  be such that the induced norm of a matrix is defined. Then the 

quadratic form can be written as 

𝐐𝐐 = ∫ ‖[𝐈𝐈𝟑𝟑 𝐊𝐊𝟑𝟑×𝟒𝟒]‖2𝑑𝑑𝑑𝑑𝑡𝑡𝑓𝑓
𝑡𝑡0

                    (4.37) 

𝐐𝐐 = ∫ ‖[𝐈𝐈𝟑𝟑 𝐊𝐊𝟑𝟑×𝟒𝟒]𝐪𝐪�‖2𝑑𝑑𝑑𝑑𝑡𝑡𝑓𝑓
𝑡𝑡0

                    (4.38) 

If 𝐌𝐌�𝑡𝑡0, 𝑡𝑡𝑓𝑓� was not invertible, then 𝐐𝐐 = 0, and 

∫ ‖[𝐈𝐈𝟑𝟑 𝐊𝐊𝟑𝟑×𝟒𝟒]𝐪𝐪�‖2𝑑𝑑𝑑𝑑𝑡𝑡𝑓𝑓
𝑡𝑡0

= 0                    (4.39) 

‖[𝐈𝐈𝟑𝟑 𝐊𝐊𝟑𝟑×𝟒𝟒]𝐪𝐪�‖ = 0                      (4.40) 

Let 𝐪𝐪� = �
𝐪𝐪𝟏𝟏
𝐪𝐪𝟐𝟐�, where 𝐪𝐪𝟏𝟏 ∈ 𝐑𝐑3×1 and 𝐪𝐪𝟐𝟐 ∈ 𝐑𝐑4×1 then 

𝐪𝐪𝟏𝟏 + 𝐊𝐊𝟑𝟑×𝟒𝟒𝐪𝐪𝟐𝟐 = 𝟎𝟎                      (4.41) 

𝐪𝐪𝟏𝟏 + �−∫ 𝐓𝐓𝐵𝐵𝑡𝑡𝑓𝑓
𝑡𝑡0

𝑑𝑑𝑑𝑑 ∫ 𝐑𝐑𝑇𝑇𝐵𝐵
𝐸𝐸𝑡𝑡𝑓𝑓

𝑡𝑡0
𝑑𝑑𝑑𝑑�𝐪𝐪𝟐𝟐 = 𝟎𝟎            (4.42) 

Setting 𝑡𝑡𝑓𝑓 = 𝑡𝑡0, then 𝐪𝐪𝟏𝟏 = 𝟎𝟎. Hence 
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�−∫ 𝐓𝐓𝐵𝐵𝑡𝑡𝑓𝑓
𝑡𝑡0

𝑑𝑑𝑑𝑑 ∫ 𝐑𝐑𝑇𝑇𝐵𝐵
𝐸𝐸𝑡𝑡𝑓𝑓

𝑡𝑡0
𝑑𝑑𝑑𝑑� 𝐪𝐪𝟐𝟐 = 𝟎𝟎               (4.43) 

Let 𝐪𝐪𝟐𝟐 = �

𝑞𝑞21
𝑞𝑞22
𝑞𝑞23
𝑞𝑞24

� , 𝐓𝐓𝐵𝐵 = �
0
0
𝑇𝑇𝐵𝐵
� , and 𝐑𝐑𝐵𝐵𝐸𝐸 = 𝐑𝐑𝒁𝒁(𝛼𝛼)𝐑𝐑𝒀𝒀(𝛽𝛽)𝐑𝐑𝑿𝑿(𝛾𝛾) =

�
𝑐𝑐𝛼𝛼𝑠𝑠𝛽𝛽 𝑐𝑐𝛼𝛼𝑠𝑠𝛽𝛽𝑠𝑠𝛾𝛾 − 𝑠𝑠𝛼𝛼𝑐𝑐𝛾𝛾 𝑐𝑐𝛼𝛼𝑠𝑠𝛽𝛽𝑐𝑐𝛾𝛾 + 𝑠𝑠𝛼𝛼𝑠𝑠𝛾𝛾
𝑠𝑠𝛼𝛼𝑐𝑐𝛽𝛽 𝑠𝑠𝛼𝛼𝑠𝑠𝛽𝛽𝑠𝑠𝛾𝛾 + 𝑐𝑐𝛼𝛼𝑐𝑐𝛾𝛾 𝑠𝑠𝛼𝛼𝑠𝑠𝛽𝛽𝑐𝑐𝛾𝛾 − 𝑐𝑐𝛼𝛼𝑠𝑠𝛾𝛾
−𝑠𝑠𝛽𝛽 𝑐𝑐𝛽𝛽𝑠𝑠𝛾𝛾 𝑐𝑐𝛽𝛽𝑐𝑐𝛾𝛾

�, where 𝛼𝛼 , 𝛽𝛽 , 𝛾𝛾 denoted roll, pitch, and 

yaw angles, respectively. 𝑐𝑐(∙) denoted the cosine of an angle, while 𝑠𝑠(∙) denoted the 

sine of an angle. Rewriting Eq. (4.43), one can get 

∫ �
0
0

− 𝑇𝑇𝐵𝐵

𝑐𝑐𝛼𝛼𝑠𝑠𝛽𝛽 𝑠𝑠𝛼𝛼𝑐𝑐𝛽𝛽 −𝑠𝑠𝛽𝛽
𝑐𝑐𝛼𝛼𝑠𝑠𝛽𝛽𝑠𝑠𝛾𝛾 − 𝑠𝑠𝛼𝛼𝑐𝑐𝛾𝛾 𝑠𝑠𝛼𝛼𝑠𝑠𝛽𝛽𝑠𝑠𝛾𝛾 + 𝑐𝑐𝛼𝛼𝑐𝑐𝛾𝛾 𝑐𝑐𝛽𝛽𝑠𝑠𝛾𝛾
𝑐𝑐𝛼𝛼𝑠𝑠𝛽𝛽𝑐𝑐𝛾𝛾 + 𝑠𝑠𝛼𝛼𝑠𝑠𝛾𝛾 𝑠𝑠𝛼𝛼𝑠𝑠𝛽𝛽𝑐𝑐𝛾𝛾 − 𝑐𝑐𝛼𝛼𝑠𝑠𝛾𝛾 𝑐𝑐𝛽𝛽𝑐𝑐𝛾𝛾

� �

𝑞𝑞21
𝑞𝑞22
𝑞𝑞23
𝑞𝑞24

�𝑡𝑡𝑓𝑓
𝑡𝑡0

𝑑𝑑𝑑𝑑 = 𝟎𝟎  (4.44) 

Taking time derivative of both sides of Eq. (4.44), one can get 

�
𝑞𝑞22𝑐𝑐𝛼𝛼𝑠𝑠𝛽𝛽 + 𝑞𝑞23𝑠𝑠𝛼𝛼𝑐𝑐𝛽𝛽 + 𝑞𝑞24(−𝑠𝑠𝛽𝛽) = 0

𝑞𝑞22(𝑐𝑐𝛼𝛼𝑠𝑠𝛽𝛽𝑠𝑠𝛾𝛾 − 𝑠𝑠𝛼𝛼𝑐𝑐𝛾𝛾) + 𝑞𝑞23(𝑠𝑠𝛼𝛼𝑠𝑠𝛽𝛽𝑠𝑠𝛾𝛾 + 𝑐𝑐𝛼𝛼𝑐𝑐𝛾𝛾) + 𝑞𝑞24𝑐𝑐𝛽𝛽𝑠𝑠𝛾𝛾 = 0
−𝑞𝑞21 𝑇𝑇 +𝐵𝐵 𝑞𝑞22(𝑐𝑐𝛼𝛼𝑠𝑠𝛽𝛽𝑐𝑐𝛾𝛾 + 𝑠𝑠𝛼𝛼𝑠𝑠𝛾𝛾) + 𝑞𝑞23(𝑠𝑠𝛼𝛼𝑠𝑠𝛽𝛽𝑐𝑐𝛾𝛾 − 𝑐𝑐𝛼𝛼𝑠𝑠𝛾𝛾) + 𝑞𝑞24𝑐𝑐𝛽𝛽𝑐𝑐𝛾𝛾 = 0

 (4.45) 

Thus, if no 𝐪𝐪𝟐𝟐 ∈ 𝐑𝐑𝟒𝟒\{𝟎𝟎} can be found that satisfies the condition in Eq. (4.45), the 

observability matrix  𝐌𝐌�𝑡𝑡0, 𝑡𝑡𝑓𝑓�  was invertible. This implied that  𝐌𝐌�𝑡𝑡0, 𝑡𝑡𝑓𝑓�  was 

invertible if and only if the following three sets of functions were linearly independent 

on [𝑡𝑡0, 𝑡𝑡𝑓𝑓]: 

{𝑐𝑐𝛼𝛼𝑠𝑠𝛽𝛽, 𝑠𝑠𝛼𝛼𝑐𝑐𝛽𝛽, −𝑠𝑠𝛽𝛽}                    (4.46a) 

{𝑐𝑐𝛼𝛼𝑠𝑠𝛽𝛽𝑠𝑠𝛾𝛾 − 𝑠𝑠𝛼𝛼𝑐𝑐𝛾𝛾, 𝑠𝑠𝛼𝛼𝑠𝑠𝛽𝛽𝑠𝑠𝛾𝛾 + 𝑐𝑐𝛼𝛼𝑐𝑐𝛾𝛾, 𝑐𝑐𝛽𝛽𝑠𝑠𝛾𝛾}           (4.46b) 

{− 𝑇𝑇𝐵𝐵 , 𝑐𝑐𝛼𝛼𝑠𝑠𝛽𝛽𝑐𝑐𝛾𝛾 + 𝑠𝑠𝛼𝛼𝑠𝑠𝛾𝛾, 𝑠𝑠𝛼𝛼𝑠𝑠𝛽𝛽𝑐𝑐𝛾𝛾 − 𝑐𝑐𝛼𝛼𝑠𝑠𝛾𝛾, 𝑐𝑐𝛽𝛽𝑐𝑐𝛾𝛾}         (4.46c) 

Using the same conditions as those of last section for 𝐓𝐓𝐵𝐵 , 𝛕𝛕𝐵𝐵 ,  𝐑𝐑𝐸𝐸𝐵𝐵 (𝑡𝑡0), and 𝐛𝐛𝐸𝐸 =

�
0.3
0.2
0.1

� Newton. Initial guesses of the initial linear velocity was using the same as that of 

last section for 𝐕𝐕�(𝑡𝑡0)𝐵𝐵 ,  𝑚𝑚�(𝑡𝑡0) = 0.14 kg, and 𝐛̂𝐛𝐸𝐸 (𝑡𝑡0) = �
0
0
0
� Newton. The Kalman 

filter parameters were set as 𝐐𝐐 = 0.01𝐈𝐈7, 𝐑𝐑 = 0.01𝐈𝐈3, and the initial covariance matrix 

𝐏𝐏(𝑡𝑡0) = 𝐈𝐈7.The simulation results gave 
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Figure 8. Simulation result of open loop system with observer 

 

Thus, as long as the actuations 𝑇𝑇𝐵𝐵  and 𝛕𝛕𝐵𝐵  were not constant on  [𝑡𝑡0, 𝑡𝑡𝑓𝑓] and they 

were sufficiently rich, then the linear time-varying system was observable and the 

unknown system parameters like 𝐛𝐛𝐸𝐸   and 𝑚𝑚 could be recovered. 

 

Apart from the above simulation, a special case involving the above three sets of 

equations was explored to explore the linear independence requirements specified in Eq. 

(4.46). 

EXAMPLE 1 — Effects of a constant rotational matrix on the performance of the 
observer 

The setting was equivalent to the limitation that 𝛼̇𝛼 = 0, 𝛽̇𝛽 = 0, 𝛾̇𝛾 = 0, and  𝛼𝛼 ≠ 𝜋𝜋
2
, 𝛽𝛽 ≠

𝜋𝜋
2
, 𝛾𝛾 ≠ 𝜋𝜋

2
. Then, a constant unit vector associated with the three sets of Eq. (4.46) could 

be easily found to be 

𝐪𝐪𝟐𝟐 = �

0
0

−𝑐𝑐𝛽𝛽𝑐𝑐𝛾𝛾
𝑠𝑠𝛼𝛼𝑠𝑠𝛽𝛽𝑐𝑐𝛾𝛾 − 𝑐𝑐𝛼𝛼𝑠𝑠𝛾𝛾

� ∈ 𝐑𝐑𝟒𝟒\{𝟎𝟎}               (4.47) 
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Although no conclusion could be made theoretically to prove the observability of the 

nonlinear system described in Eq. (4.24), the stability of the estimator system was still 

ensured. Moreover, the estimated values of the states converged to constants, though 

are not guaranteed to converge to the correct parameters. The corresponding simulation 

results were shown in the following figure: 

 
Figure 9. Simulation result of open loop system with observer and constant 𝐑𝐑𝐸𝐸𝐵𝐵  

 

Note that the conditions for the system should be set as 𝐓𝐓𝐵𝐵 = �
0
0
2
� Newton, 𝛕𝛕𝐵𝐵 = �

0
0
0
�  

rad/s2, 𝛚𝛚(𝑡𝑡0)𝐵𝐵 = �
0
0
0
� rad/s. Initial guesses of the unknown parameters 𝐕𝐕�(𝑡𝑡0) = �

2
2
2
�𝐵𝐵  

m/s, 𝑚𝑚� = 0.02 kg, 𝐛̂𝐛𝐸𝐸 = �
0
0
0
� Newton. 

 

As shown in figure 9, the estimation of both the mass of the quadrotor and the external 

force disturbance it experienced did not converge to the correct values. However, the 

convergence property still held for the observer system. 
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Chapter 5 CONTROLLER DESIGN 

So far, full information about the states was known at the output of the designed 

observer in the last chapter. Controlling algorithm design and analysis were addressed 

in this chapter. Specifically, the controller should guarantee the convergence of 

positional error while enabling the quadrotor to follow certain predefined trajectories. 

5.1 NONLINEAR BACKSTEPPING 

Standard backstepping technique was adopted in developing a tunable controlling 

algorithm. The new dynamics was described in the following equation, equivalent to 

Eq. (4.24): 

⎩
⎪
⎨

⎪
⎧ 𝐑̇𝐑𝐵𝐵𝐸𝐸 = 𝐑𝐑𝐵𝐵𝐸𝐸 𝐒𝐒( 𝛚𝛚𝐵𝐵 )

𝐏̇𝐏𝐸𝐸 = 𝐑𝐑𝐵𝐵𝐸𝐸 𝐕𝐕𝐵𝐵

𝐕̇𝐕𝐵𝐵 = −𝐒𝐒( 𝛚𝛚𝐵𝐵 ) 𝐕𝐕 − 1
𝑚𝑚

𝐓𝐓𝐵𝐵 + 𝑔𝑔 𝐑𝐑𝐸𝐸𝐵𝐵 𝐞𝐞3 + 1
𝑚𝑚

𝐑𝐑𝐸𝐸𝐵𝐵 𝐛𝐛𝐸𝐸𝐵𝐵

𝛚̇𝛚𝐵𝐵 = 𝛕𝛕𝐵𝐵

          (5.1) 

Let 𝐏𝐏d𝐸𝐸 (𝑡𝑡) be a bounded desired trajectory whose time derivatives were also bounded. 

The trajectory tracking problem now became the problem of designing the controlling 

inputs 𝐓𝐓𝐵𝐵 (𝑡𝑡) = �
0
0
𝑇𝑇(𝑡𝑡)𝐵𝐵

� and 𝛕𝛕𝐵𝐵 (𝑡𝑡) = �
𝜏𝜏x(𝑡𝑡)𝐵𝐵

𝜏𝜏y𝐵𝐵 (𝑡𝑡)
𝜏𝜏z𝐵𝐵 (𝑡𝑡)

� such that made the error dynamics 

of the position error 𝐳𝐳1(𝑡𝑡): = 𝐏𝐏(𝑡𝑡)𝐸𝐸 − 𝐏𝐏d𝐸𝐸 (𝑡𝑡) converge to zero as time 𝑡𝑡 went from 

0 to ∞. The backstepping procedures were stated as followed (time dependence and 

reference frames attached to each variable was omitted to suppress expressions). 

Define the positional error 

𝐳𝐳1: = 𝐏𝐏 − 𝐏𝐏d                        (5.2) 

and a corresponding Lyapunov function can be chosen as  

𝑉𝑉1: = 1
2
𝐳𝐳1T𝐳𝐳1                          (5.3) 

Referring to section 2.3, this particular kind of Lyapunov function had some preferred 

properties if no constraints were exerted on 𝐳𝐳1 . Firstly, 𝑉𝑉1  had continuous partial 

derivatives with respect to 𝐳𝐳1 , i.e. 𝜕𝜕𝜕𝜕1
𝜕𝜕𝐳𝐳1

= 1
2

(𝜕𝜕𝐳𝐳1)T

𝜕𝜕𝐳𝐳1
𝐳𝐳1 + 1

2
𝐳𝐳1T

𝜕𝜕𝐳𝐳1
𝜕𝜕𝐳𝐳1

= 𝐳𝐳1T , where 𝐳𝐳1T  was 

continuous as long as both 𝐏𝐏𝐸𝐸  and 𝐏𝐏d𝐸𝐸  were continuous. Secondly, 𝑉𝑉1 was positive 

definite, i.e. 𝑉𝑉1: = 1
2
𝐳𝐳1T𝐳𝐳1 = 1

2
|𝐳𝐳1|2 ≥ 0. Thirdly, 𝑉𝑉1 was radially unbounded provided 
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that no constraints like bounded conditions were exerted on 𝐳𝐳1. Now, it was desired 

that the Lyapunov function 𝑉𝑉1 had negative time derivative, so that certain kind of 

stability could be concluded with respect to the positional error 𝐳𝐳1. The time derivative 

of 𝑉𝑉1 was calculated to be: 

𝑉̇𝑉1 = 1
2
𝐳̇𝐳1T𝐳𝐳1 + 1

2
𝐳𝐳1T𝐳̇𝐳1 = 𝐳𝐳1T𝐳̇𝐳1                  (5.4) 

where 𝐳̇𝐳1 = 𝐑𝐑𝐑𝐑 − 𝐏̇𝐏d, thus: 

𝑉̇𝑉1 = 𝐳𝐳1T�𝐑𝐑𝐑𝐑 − 𝐏̇𝐏d� = −𝑘𝑘1𝐳𝐳1T𝐳𝐳1 + 𝐳𝐳1T𝐑𝐑[𝐕𝐕 + 𝐑𝐑T(−𝐏̇𝐏d + 𝑘𝑘1𝐳𝐳1)]     (5.5) 

where 𝑘𝑘1 was a positive real constant. The initiative now was to make 𝑉̇𝑉1 negative 

with respect to time so that certain kind of stability can be concluded. Note that the 

quadrotor in discussion was an underactuated one in the sense that the number of 

degrees of freedom (which was 6) was larger than the number of actuation (which was 

4). Thus, it was impossible for the quadrotor to follow exactly the predefined trajectory 

and the dynamics that went along with the trajectory. According the reasoning in [16], 

instead of driving the quantity 𝐕𝐕 + 𝐑𝐑T(−𝐏̇𝐏d + 𝑘𝑘1𝐳𝐳1) to zero, let: 

𝐳𝐳2: = 𝐕𝐕 + 𝐑𝐑T�−𝐏̇𝐏d + 𝑘𝑘1𝐳𝐳1� − 𝛅𝛅                  (5.6) 

where 𝛅𝛅 = �
𝛿𝛿x
𝛿𝛿y
𝛿𝛿z
� was a constant vector with real number coordinates. Backstepping for 

the error 𝐳𝐳2 gave: 

𝑉𝑉2: = 𝑉𝑉1 + 1
2
𝐳𝐳2T𝐳𝐳2                       (5.7) 

𝑉̇𝑉2 = 𝑉̇𝑉1 + 𝐳𝐳2T𝐳̇𝐳2                        (5.8) 

where 𝐳̇𝐳2 = 𝐕̇𝐕 + 𝐑̇𝐑T�−𝐏̇𝐏d + 𝑘𝑘1𝐳𝐳1� + 𝐑𝐑T�−𝐏̈𝐏d + 𝑘𝑘1𝐳̇𝐳1� = −𝐒𝐒𝐒𝐒 + 𝑔𝑔𝐑𝐑T𝐞𝐞3 + 1
𝑚𝑚
𝐑𝐑T𝐛𝐛 −

1
𝑚𝑚
𝐓𝐓 − 𝐒𝐒𝐑𝐑T�−𝐏̇𝐏d + 𝑘𝑘1𝐳𝐳1� + 𝐑𝐑T�−𝐏̈𝐏d + 𝑘𝑘1𝐳̇𝐳1� = −𝐒𝐒𝐒𝐒 + 𝑔𝑔𝐑𝐑T𝐞𝐞3 + 1

𝑚𝑚
𝐑𝐑T𝐛𝐛 − 1

𝑚𝑚
𝐓𝐓 −

𝐒𝐒(𝐳𝐳2 + 𝛅𝛅 − 𝐕𝐕) + 𝐑𝐑T�−𝐏̈𝐏d + 𝑘𝑘1𝐳̇𝐳1� = −𝐒𝐒(𝐳𝐳2 + 𝛅𝛅) + 𝑔𝑔𝐑𝐑T𝐞𝐞3 + 1
𝑚𝑚
𝐑𝐑T𝐛𝐛 − 1

𝑚𝑚
𝐓𝐓 +

𝐑𝐑T�−𝐏̈𝐏d + 𝑘𝑘1𝐳̇𝐳1�, as derived from Eq. (5.1) and Eq. (5.6). Thus: 

𝑉̇𝑉2 = −𝑘𝑘1𝐳𝐳1T𝐳𝐳1 + 𝐳𝐳1T𝐑𝐑[𝐕𝐕 + 𝐑𝐑T(−𝐏̇𝐏d + 𝑘𝑘1𝐳𝐳1)] + 𝐳𝐳2T𝐳̇𝐳2         (5.9) 

                = −𝑘𝑘1𝐳𝐳1T𝐳𝐳1 + 𝐳𝐳1T𝐑𝐑(𝐳𝐳2 + 𝛅𝛅) + 𝐳𝐳2T𝐳̇𝐳2         

                = −𝑘𝑘1𝐳𝐳1T𝐳𝐳1 − 𝑘𝑘2𝐳𝐳2T𝐳𝐳2 + 𝐳𝐳1T𝐑𝐑(𝐳𝐳2 + 𝛅𝛅) + 𝐳𝐳2T𝐳̇𝐳2 + 𝑘𝑘2𝐳𝐳2T𝐳𝐳2 

                = −∑ 𝑘𝑘𝑖𝑖𝐳𝐳𝑖𝑖T𝐳𝐳𝑖𝑖2
𝑖𝑖=1 + 𝐳𝐳1T𝐑𝐑(𝐳𝐳2 + 𝛅𝛅) + 𝐳𝐳2T(𝐳̇𝐳2 + 𝑘𝑘2𝐳𝐳2) 

                = −∑ 𝑘𝑘𝑖𝑖𝐳𝐳𝑖𝑖T𝐳𝐳𝑖𝑖2
𝑖𝑖=1 + 𝐳𝐳1T𝐑𝐑(𝐳𝐳2 + 𝛅𝛅) + 𝐳𝐳2T[−𝐒𝐒(𝐳𝐳2 + 𝛅𝛅) + 𝑔𝑔𝐑𝐑T𝐞𝐞3 +

                                         1
𝑚𝑚
𝐑𝐑T𝐛𝐛 − 1

𝑚𝑚
𝐓𝐓 + 𝐑𝐑T�−𝐏̈𝐏d + 𝑘𝑘1𝐳̇𝐳1� + 𝑘𝑘2𝐳𝐳2] 
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                = −∑ 𝑘𝑘𝑖𝑖𝐳𝐳𝑖𝑖T𝐳𝐳𝑖𝑖2
𝑖𝑖=1 + 𝐳𝐳1T𝐑𝐑(𝐳𝐳2 + 𝛅𝛅) + 𝐳𝐳2T[−𝐒𝐒𝐒𝐒 + 𝑔𝑔𝐑𝐑T𝐞𝐞3 +

                                         1
𝑚𝑚
𝐑𝐑T𝐛𝐛 − 1

𝑚𝑚
𝐓𝐓 + 𝐑𝐑T�−𝐏̈𝐏d + 𝑘𝑘1𝐳̇𝐳1� + 𝑘𝑘2𝐳𝐳2]  

where 𝑘𝑘2  was a positive real constant. With the fact that for any skew-symmetric 

matrix 𝐒𝐒, 𝐳𝐳2T𝐒𝐒𝐳𝐳2 ≡ 0. According the reasoning in [16], one of the control inputs 𝐓𝐓 

can be determined at this stage if forcing the term [−𝐒𝐒𝐒𝐒 + 𝑔𝑔𝐑𝐑T𝐞𝐞3 + 1
𝑚𝑚
𝐑𝐑T𝐛𝐛 − 1

𝑚𝑚
𝐓𝐓 +

𝐑𝐑T�−𝐏̈𝐏d + 𝑘𝑘1𝐳̇𝐳1� + 𝑘𝑘2𝐳𝐳2] to zero. Let: 

𝐡𝐡: = 𝑔𝑔𝐑𝐑T𝐞𝐞3 + 1
𝑚𝑚
𝐑𝐑T𝐛𝐛 + 𝐑𝐑T�−𝐏̈𝐏d + 𝑘𝑘1𝐳̇𝐳1� + 𝑘𝑘2𝐳𝐳2         (5.10) 

then: 

𝑇𝑇 = 𝑚𝑚𝐞𝐞3T(−𝐒𝐒𝐒𝐒+ 𝐡𝐡)                     (5.11) 

𝐓𝐓 = 𝑇𝑇𝐞𝐞3 = �
0
0

𝑚𝑚𝐞𝐞3T(−𝐒𝐒𝐒𝐒 + 𝐡𝐡)
�                 (5.12) 

To figure out the remaining three control inputs 𝛕𝛕𝐵𝐵 (𝑡𝑡) = �
𝜏𝜏x(𝑡𝑡)𝐵𝐵

𝜏𝜏y𝐵𝐵 (𝑡𝑡)
𝜏𝜏z𝐵𝐵 (𝑡𝑡)

� , backstepping 

continued after some necessary transformation of the above equation: 

𝑉̇𝑉2 = −∑ 𝑘𝑘𝑖𝑖𝐳𝐳𝑖𝑖T𝐳𝐳𝑖𝑖2
𝑖𝑖=1 + 𝐳𝐳1T𝐑𝐑(𝐳𝐳2 + 𝛅𝛅) + 𝐳𝐳2T(−𝐒𝐒𝐒𝐒 − 𝑇𝑇

𝑚𝑚
𝐞𝐞3 + 𝐡𝐡)     (5.13) 

denote 𝐳𝐳2 = �
𝑧𝑧21
𝑧𝑧22
𝑧𝑧23

�,  𝐒𝐒 = �
0 −𝜔𝜔z 𝜔𝜔y
𝜔𝜔z 0 −𝜔𝜔x
−𝜔𝜔y 𝜔𝜔x 0

�,  𝐡𝐡 = �
ℎx
ℎy
ℎz
�, then the part in Eq. (5.13): 

𝐳𝐳2T �−𝐒𝐒𝐒𝐒 −
𝑇𝑇
𝑚𝑚
𝐞𝐞3 + 𝐡𝐡� = [𝑧𝑧21 𝑧𝑧22 𝑧𝑧23]�− �

0 −𝜔𝜔z 𝜔𝜔y
𝜔𝜔z 0 −𝜔𝜔x
−𝜔𝜔y 𝜔𝜔x 0

� �
𝛿𝛿x
𝛿𝛿y
𝛿𝛿z
�  (5.14) 

                         −[0 0 1]��
ℎx
ℎy
ℎz
� − �

0 −𝜔𝜔z 𝜔𝜔y
𝜔𝜔z 0 −𝜔𝜔x
−𝜔𝜔y 𝜔𝜔x 0

� �
𝛿𝛿x
𝛿𝛿y
𝛿𝛿z
�� �

0
0
1
� 

                         + �
ℎx
ℎy
ℎz
�� 

                       = [𝑧𝑧21 𝑧𝑧22 𝑧𝑧23]�− �
−𝜔𝜔z𝛿𝛿y + 𝜔𝜔y𝛿𝛿z
𝜔𝜔z𝛿𝛿x − 𝜔𝜔x𝛿𝛿z
−𝜔𝜔y𝛿𝛿x + 𝜔𝜔x𝛿𝛿y

� + �
ℎx
ℎy
ℎz
� + 

                         + �
0
0

−𝜔𝜔y𝛿𝛿x + 𝜔𝜔x𝛿𝛿y − ℎz
�� 
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                       = [𝑧𝑧21 𝑧𝑧22 𝑧𝑧23] �
ℎx + 𝜔𝜔z𝛿𝛿y − 𝜔𝜔y𝛿𝛿z
ℎy − 𝜔𝜔z𝛿𝛿x + 𝜔𝜔x𝛿𝛿z

0
� 

                       = [𝑧𝑧21 𝑧𝑧22] ��
𝜔𝜔z𝛿𝛿y − 𝜔𝜔y𝛿𝛿z
−𝜔𝜔z𝛿𝛿x + 𝜔𝜔x𝛿𝛿z

� + �
ℎx
ℎy
�� 

Meanwhile,  𝐳̈𝐳1 = 𝐑̇𝐑𝐕𝐕 + 𝐑𝐑𝐕̇𝐕 − 𝐏̈𝐏d = 𝐑𝐑𝐑𝐑𝐑𝐑 + 𝐑𝐑�−𝐒𝐒𝐒𝐒 + 𝑔𝑔𝐑𝐑T𝐞𝐞3 + 1
𝑚𝑚
𝐑𝐑T𝐛𝐛 − 1

𝑚𝑚
𝐓𝐓� −

𝐏̈𝐏d = 𝑔𝑔𝐞𝐞3 + 1
𝑚𝑚
𝐛𝐛 − 𝐑𝐑

𝑚𝑚
𝐓𝐓 − 𝐏̈𝐏d , 𝐳̇𝐳2 = −𝐒𝐒(𝐳𝐳2 + 𝛅𝛅) − 𝑇𝑇

𝑚𝑚
𝐞𝐞3 + 𝐡𝐡 − 𝑘𝑘2𝐳𝐳2 . Let  𝐌𝐌 =

�1 0 0
0 1 0�, 𝛅𝛅n = �

0 −𝛿𝛿z 𝛿𝛿y
𝛿𝛿z 0 −𝛿𝛿x

�, 𝛚𝛚 = �
𝜔𝜔x
𝜔𝜔y
𝜔𝜔z
�, then Eq. (5.14) became: 

𝐳𝐳2T �−𝐒𝐒𝐒𝐒 −
𝑇𝑇
𝑚𝑚
𝐞𝐞3 + 𝐡𝐡� = (𝐌𝐌𝐳𝐳2)T(𝛅𝛅n𝛚𝛚 + 𝐌𝐌𝐡𝐡)          (5.15) 

Let 𝐳𝐳2n = 𝐌𝐌𝐳𝐳2,  𝐡𝐡n = 𝐌𝐌𝐡𝐡, then Eq. (5.13) became: 

𝑉̇𝑉2 = −∑ 𝑘𝑘𝑖𝑖𝐳𝐳𝑖𝑖T𝐳𝐳𝑖𝑖2
𝑖𝑖=1 + 𝐳𝐳1T𝐑𝐑(𝐳𝐳2 + 𝛅𝛅) + 𝐳𝐳2nT (𝛅𝛅n𝛚𝛚+ 𝐡𝐡n)       (5.16) 

Continuing the backstepping process, let: 

𝐳𝐳3: = 𝛅𝛅n𝛚𝛚 + 𝐡𝐡n                       (5.17) 

𝑉𝑉3: = 𝑉𝑉2 + 1
2
𝐳𝐳3T𝐳𝐳3                      (5.18) 

𝑉̇𝑉3 = 𝑉̇𝑉2 + 𝐳𝐳3T𝐳̇𝐳3                       (5.19) 

where 𝐳̇𝐳3 = 𝛅𝛅n𝛚̇𝛚 + 𝐡̇𝐡n = 𝛅𝛅n𝛕𝛕 + 𝐌𝐌𝐡̇𝐡 = 𝛅𝛅n𝛕𝛕 + 𝐌𝐌�𝑔𝑔𝐑̇𝐑T𝐞𝐞3 + 1
𝑚𝑚
𝐑̇𝐑T𝐛𝐛 + 𝐑̇𝐑T�−𝐏̈𝐏d +

𝑘𝑘1𝐳̇𝐳1� + 𝐑𝐑T�−𝐏⃛𝐏d + 𝑘𝑘1𝐳̈𝐳1� + 𝑘𝑘2𝐳̇𝐳2� = 𝛅𝛅n𝛕𝛕 + 𝐌𝐌�−𝑔𝑔𝐒𝐒𝐑𝐑T𝐞𝐞3 −
1
𝑚𝑚
𝐒𝐒𝐑𝐑T𝐛𝐛 − 𝐒𝐒𝐑𝐑T�−𝐏̈𝐏d +

𝑘𝑘1𝐳̇𝐳1� + 𝐑𝐑T�−𝐏⃛𝐏d + 𝑘𝑘1𝐳̈𝐳1� + 𝑘𝑘2𝐳̇𝐳2�. Then: 

𝑉̇𝑉3 = −∑ 𝑘𝑘𝑖𝑖𝐳𝐳𝑖𝑖T𝐳𝐳𝑖𝑖3
𝑖𝑖=1 + 𝐳𝐳1T𝐑𝐑(𝐳𝐳2 + 𝛅𝛅) + 𝐳𝐳2nT 𝐳𝐳3 + 𝐳𝐳3T𝐳̇𝐳3 + 𝑘𝑘3𝐳𝐳3T𝐳𝐳3    (5.20) 

             = −∑ 𝑘𝑘𝑖𝑖𝐳𝐳𝑖𝑖T𝐳𝐳𝑖𝑖3
𝑖𝑖=1 + 𝐳𝐳1T𝐑𝐑(𝐳𝐳2 + 𝛅𝛅) + 𝐳𝐳3T(𝐳̇𝐳3 + 𝑘𝑘3𝐳𝐳3 + 𝐳𝐳2n) 

             = −∑ 𝑘𝑘𝑖𝑖𝐳𝐳𝑖𝑖T𝐳𝐳𝑖𝑖3
𝑖𝑖=1 + 𝐳𝐳1T𝐑𝐑(𝐳𝐳2 + 𝛅𝛅) + 𝐳𝐳3T(𝛅𝛅n𝛕𝛕 + 𝐡̇𝐡n + 𝑘𝑘3𝐳𝐳3 + 𝐳𝐳2n) 

According the reasoning in [16], the torque control can be set such that the term (𝛅𝛅n𝛕𝛕 +

𝐡̇𝐡n + 𝑘𝑘3𝐳𝐳3 + 𝐳𝐳2n) was zero: 

𝛅𝛅n𝛕𝛕 + 𝐡̇𝐡n + 𝑘𝑘3𝐳𝐳3 + 𝐳𝐳2n = 0                  (5.21) 

𝛅𝛅n𝛕𝛕 = −𝐡̇𝐡n − 𝑘𝑘3𝐳𝐳3 − 𝐳𝐳2n                   (5.22) 

Note that the size of 𝛅𝛅n  was 2 by 3, which was not a square matrix. Thus, 

pseudoinverse of 𝛅𝛅n was used to calculate 𝛕𝛕 in the Eq. (5.22). Due to the fact that 

(𝛅𝛅n𝛅𝛅n𝐓𝐓)(𝛅𝛅n𝛅𝛅n𝐓𝐓)−1 = 𝐈𝐈: 

(𝛅𝛅n𝛅𝛅n𝐓𝐓)(𝛅𝛅n𝛅𝛅n𝐓𝐓)−1�−𝐡̇𝐡n − 𝑘𝑘3𝐳𝐳3 − 𝐳𝐳2n� = −𝐡̇𝐡n − 𝑘𝑘3𝐳𝐳3 − 𝐳𝐳2n      (5.23) 

Then, 𝛕𝛕 can be calculated as: 
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𝛕𝛕 = −𝛅𝛅n𝐓𝐓(𝛅𝛅n𝛅𝛅n𝐓𝐓)−1�𝐡̇𝐡n + 𝑘𝑘3𝐳𝐳3 + 𝐳𝐳2n�              (5.24) 

Note that the inverse of the matrix 𝛅𝛅n𝛅𝛅n𝐓𝐓 existed if and only if 𝑑𝑑𝑑𝑑𝑑𝑑(𝛅𝛅n𝛅𝛅n𝐓𝐓) ≠ 0, which 

indicated that �
𝛿𝛿y2 + 𝛿𝛿z2 −𝛿𝛿x𝛿𝛿y
−𝛿𝛿x𝛿𝛿y 𝛿𝛿x2 + 𝛿𝛿z2

� = �𝛿𝛿y2 + 𝛿𝛿z2�(𝛿𝛿x2 + 𝛿𝛿z2) − 𝛿𝛿x2𝛿𝛿y2 = 𝛿𝛿z2(𝛿𝛿x2 + 𝛿𝛿y2 +

𝛿𝛿z2) ≠ 0. Obviously, as long as 𝛿𝛿z ≠ 0, then the inverse of the matrix 𝛅𝛅n𝛅𝛅n𝐓𝐓 existed, 

and a 𝛕𝛕 can be correspondingly calculated. Thus, selection of the constant vector 𝛅𝛅 =

�
𝛿𝛿x
𝛿𝛿y
𝛿𝛿z
� would have a restriction that 𝛿𝛿z ≠ 0. 

5.2 EQUILIBRIUM POINTS 

For the nonlinear system described in Eq. (5.1), the primary goal was to follow a pre-

defined trajectory 𝐏𝐏𝐸𝐸 𝑑𝑑 ∈ 𝐑𝐑3×1  parametrized in time. With the analysis throughout 

section 5.1, the trajectory tracking problem became one with three error states defined 

in section 5.1. Summing up, one can get: 

�
𝐳̇𝐳1 = 𝐑𝐑𝐑𝐑 − 𝐏̇𝐏d

𝐳̇𝐳2 = −𝐒𝐒(𝐳𝐳2∗ + 𝛅𝛅) − 1
𝑚𝑚
𝐓𝐓 + 𝐡𝐡 − 𝑘𝑘2𝐳𝐳2

 𝐳̇𝐳3 = 𝛅𝛅n𝛕𝛕 + 𝐡̇𝐡n

            (5.25) 

With 𝐓𝐓(𝐳𝐳, 𝑡𝑡) and 𝛕𝛕(𝐳𝐳, 𝑡𝑡), define 𝐳̇𝐳: = �
𝐳̇𝐳1
𝐳̇𝐳2
𝐳̇𝐳3
� = 𝒈𝒈(𝐳𝐳, 𝑡𝑡). It was observed that the overall 

dynamic system of tracking errors was non-autonomous. Using the definition of 

equilibrium points defined in Eq. (2.2), one assumed there was/were some equilibrium 

points, denoted as  𝐳𝐳∗ = �
𝐳𝐳1∗
𝐳𝐳2∗
𝐳𝐳3∗
�, associated with the above error dynamics. Then: 

𝒈𝒈(𝐳𝐳∗, 𝑡𝑡) ≡ 𝟎𝟎        ∀𝑡𝑡 ≥ 𝑡𝑡0          (5.26) 

Substituting the expression of 𝐳𝐳 with 𝐳𝐳∗ in Eq. (5.25), one can get: 

�
𝐑𝐑𝐑𝐑 − 𝐏̇𝐏d = 𝟎𝟎

−𝐒𝐒(𝐳𝐳2∗ + 𝛅𝛅) − 1
𝑚𝑚
𝐓𝐓 + 𝐡𝐡 − 𝑘𝑘2𝐳𝐳2∗ = 𝟎𝟎

𝛅𝛅n𝛕𝛕 + 𝐡̇𝐡n = 𝟎𝟎

             (5.27) 

With the control input 𝐓𝐓 = 𝑚𝑚𝐞𝐞3T(−𝐒𝐒𝐒𝐒+ 𝐡𝐡)𝐞𝐞3 and 𝛕𝛕 = −𝛅𝛅n𝐓𝐓(𝛅𝛅n𝛅𝛅n𝐓𝐓)−1�𝐡̇𝐡n + 𝑘𝑘3𝐳𝐳3 +

𝐳𝐳2n� available, equation (5.27) became 
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�
𝐑𝐑𝐑𝐑 − 𝐏̇𝐏d = 𝟎𝟎

−𝐒𝐒𝐳𝐳2∗ − 𝑘𝑘2𝐳𝐳2∗ + 𝑘𝑘2𝐃𝐃𝐳𝐳2∗ + 𝐃𝐃(−𝐒𝐒𝐒𝐒 + 𝑔𝑔𝐑𝐑T𝐞𝐞3 + 𝐑𝐑T 𝐛𝐛
𝑚𝑚
− 𝐑𝐑T𝐏̈𝐏d) = 𝟎𝟎

−𝑘𝑘2𝐳𝐳3∗ − 𝐌𝐌𝐳𝐳2∗ = 𝟎𝟎
  (5.28) 

where 𝐃𝐃 = �
1 0 0
0 1 0
0 0 0

� . Thus, the trivial equilibrium point was  𝐳𝐳∗ = �
𝐳𝐳1∗
𝐳𝐳2∗
𝐳𝐳3∗
� , which 

indicated that the quadrotor may not follow exactly the same dynamics of the predefined 

trajectory 𝐏𝐏d and its derivatives 𝐏̇𝐏d, 𝐏̈𝐏d. On the other hand, the only state variable of 

interest was the position tracking error 𝐳𝐳1. At 𝐳𝐳1∗, 𝐳̈𝐳1∗ = 𝐑𝐑𝐓𝐓
𝑚𝑚

+ 𝑔𝑔𝐞𝐞3 + 𝐛𝐛
𝑚𝑚
− 𝐏̈𝐏d = 𝟎𝟎, thus 

𝐑𝐑𝑇𝑇𝐞𝐞3 = 𝑚𝑚𝑔𝑔𝐞𝐞3 + 𝐛𝐛 −𝑚𝑚𝐏̈𝐏d . Hence, at equilibrium points  𝐳̈𝐳∗ ,  𝐑𝐑𝐵𝐵𝐸𝐸 𝑇𝑇𝐵𝐵 𝐞𝐞3 =

𝐑𝐑𝐑𝐑𝒛𝒛(𝜑𝜑)𝐵𝐵
𝐸𝐸 𝑇𝑇𝐵𝐵 𝐞𝐞3, which indicated that the control quantity 𝛕𝛕𝐵𝐵  had one element, 𝜏𝜏𝐵𝐵 𝑧𝑧, 

that contributed nothing to the trajectory tracking. And this extra degree of freedom 

could be exploited within controller design to control the orientation and heading of the 

quadrotor. 

5.3 STABILITY OF THE CONTROLLER WITH CORRECT PARAMETERS 

Following the proof from [17], the stability of the controlling algorithm was proved to 

be exponentially stable under the condition that the desired trajectory 𝐏𝐏d  was 

sufficiently smooth and its time-derivatives were bounded by an upper bound. The 

Lyapunov function 

𝑉𝑉3 = ∑ 1
2
𝐳𝐳𝑖𝑖T𝐳𝐳𝑖𝑖3

𝑖𝑖=1                       (5.29) 

was always positive definite. With the feedback control law, its derivative became 

𝑉̇𝑉3 = −∑ 𝑘𝑘𝑖𝑖𝐳𝐳𝑖𝑖T𝐳𝐳𝑖𝑖3
𝑖𝑖=1 + 𝐳𝐳1T𝐑𝐑(𝐳𝐳2 + 𝛅𝛅)               (5.30) 

     = −∑ 𝑘𝑘𝑖𝑖𝐳𝐳𝑖𝑖T𝐳𝐳𝑖𝑖3
𝑖𝑖=1 + 𝐳𝐳1T𝐑𝐑𝐳𝐳2 + 𝐳𝐳1T𝐑𝐑𝐑𝐑 

Using Young’s inequality in Eq. (2.21), for any 𝛾𝛾 > 0, 

    𝑉̇𝑉3 ≤ −∑ 𝑘𝑘𝑖𝑖𝐳𝐳𝑖𝑖T𝐳𝐳𝑖𝑖3
𝑖𝑖=1 + 𝐳𝐳1T𝐑𝐑𝐳𝐳2 + 𝛾𝛾

2
𝐳𝐳1T𝐳𝐳1 + 1

2𝛾𝛾
(𝐑𝐑𝐑𝐑)T𝐑𝐑𝐑𝐑           (5.31) 

            ≤ −(𝑘𝑘1𝐳𝐳1T𝐳𝐳1 − 𝐳𝐳1T𝐑𝐑𝐳𝐳2 + 𝑘𝑘2𝐳𝐳2T𝐳𝐳2) − 𝑘𝑘3𝐳𝐳3T𝐳𝐳3 + 𝛾𝛾
2
𝐳𝐳1T𝐳𝐳1 + 1

2𝛾𝛾
(𝐑𝐑𝐑𝐑)T𝐑𝐑𝐑𝐑 

            ≤ −�(𝑘𝑘1 −
𝛾𝛾
2
)𝐳𝐳1T𝐳𝐳1 − ‖𝐳𝐳1‖‖𝐳𝐳2‖ + 𝑘𝑘2𝐳𝐳2T𝐳𝐳2� − 𝑘𝑘3𝐳𝐳3T𝐳𝐳3 + 1

2𝛾𝛾
‖𝛅𝛅‖𝟐𝟐 

            ≤ −��𝑘𝑘1 −
𝛾𝛾
2
𝐳𝐳1 − �𝑘𝑘2𝐳𝐳2�

2

− 𝑘𝑘3𝐳𝐳3T𝐳𝐳3 + 1
2𝛾𝛾
‖𝛅𝛅‖𝟐𝟐 −

                                2�𝑘𝑘2 �𝑘𝑘1 −
𝛾𝛾
2
� ‖𝐳𝐳1‖‖𝐳𝐳2‖ 
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Here, choose 𝑘𝑘1𝑘𝑘2 ≥
1
4

 and 𝑘𝑘1 > 𝛾𝛾
2

would be enough to make the term 

2�𝑘𝑘2 �𝑘𝑘1 −
𝛾𝛾
2
� ‖𝐳𝐳1‖‖𝐳𝐳2‖ > 0. And there existed a constant 𝜆𝜆 > 0, such that 

𝑉̇𝑉3 ≤ −𝜆𝜆𝑉𝑉3 + 1
2𝛾𝛾
‖𝛅𝛅‖𝟐𝟐                    (5.32) 

From Eq. (2.22) and Eq. (2.23), 

𝑉𝑉3(𝑡𝑡) ≤ 𝑒𝑒−𝜆𝜆𝜆𝜆𝑉𝑉3(0) + 1
2𝜆𝜆𝜆𝜆

‖𝛅𝛅‖𝟐𝟐        𝑡𝑡 ≥ 0              (5.33) 

Thus, ‖𝐳𝐳1(𝑡𝑡)‖2 ≤ 2𝑉𝑉3(𝑡𝑡), and after infinite time 

‖𝐳𝐳1(𝑡𝑡)‖ ≤ ‖𝛅𝛅‖
�2𝜆𝜆𝜆𝜆

        𝑡𝑡 → ∞                   (5.34) 

And the radius ‖𝛅𝛅‖
�2𝜆𝜆𝜆𝜆

 could be made as small as possible by appropriately choosing the 

controller parameters. 

 
Figure 10. Quadrotor and controller model 
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The interconnected system of quadrotor and the proposed controller was implemented 

in SIMULINK environment. The controller was fed with correct values of the unknown 

parameters. Controller alone with correct parameters can be simulated by setting the 

noise level in the Kalman-Bucy filter to zero and setting the parameters of interest to 

their correct values, respectively. Specifically, the mass of the quadrotor 𝑚𝑚 = 0.206 kg, 

the gravity 𝑔𝑔 = 9.7877 m/s2, and external force disturbance 𝐛𝐛𝐸𝐸 = �
0.3
0.2
0.1

� Newton. 

Initial position 𝐏𝐏(𝑡𝑡0) = �
0
0
−1

� m, initial linear and angular velocities were zero. By 

assumption, the desired trajectory was a smooth and bounded function parametrized in 

time. Here, it was assumed to be a simple circle with radius of 1.2 𝑚𝑚 defined as 

�
𝑥𝑥(𝑡𝑡) = 1.2 cos 𝑡𝑡
𝑦𝑦(𝑡𝑡) = 1.2 sin 𝑡𝑡
𝑧𝑧(𝑡𝑡) = −1

       𝑡𝑡 ≥ 0                   (5.35) 

Set control parameters 𝑘𝑘1 = 4.5, 𝑘𝑘2 = 4, 𝑘𝑘3 = 3, and 𝛅𝛅 = �
0
0

0.15
�m/s. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Simulation result of trajectory tracking with correct parameters 

 

As indicated from the figure above, the quadrotor followed the desired trajectory 

(painted in blue) regardless of its initial deviation. Note also that the quadrotor tilted 

itself in order to resist the external force disturbance. The following figure showed error 

propagation of this configuration. 
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Figure 12. Error propagation of trajectory tracking with correct parameters 

 

As indicated in the figure above, 𝐳𝐳1, 𝐳𝐳2, 𝐳𝐳3 converged to zero in less than seconds. 

Other than the fact that the quadrotor approached to the desired trajectory, it can be also 

inferred that the quadrotor approached both the linear velocities and angular velocities 

that was inexplicitly defined in Eq. (5.35). Propagation of actuation variables 𝐓𝐓 and 𝛕𝛕 

was shown in the following figure.  

 
Figure 13. Actuation propagation of trajectory tracking with correct parameters 
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As indicated from the figure above, the actuation remained bounded for all time. During 

the transition period, the quadrotor tended to lift itself to approach the desired trajectory, 

thus 𝐓𝐓 surged to a peak. At the same time, the torque 𝛕𝛕 also changed vibrated to 

regulate the quadrotor to balance the external force disturbance. What’s more, it was 

interesting to see that the result met the expectation that the third element in torque 𝛕𝛕, 

namely 𝜏𝜏𝑧𝑧, played no role in trajectory tracking, as explained in section 5.2. 

To prove that the actuation variables 𝐓𝐓 and 𝛕𝛕 indeed remain bounded for all time, 

zero dynamics of the nonlinear system should be analyzed. 

5.4 ZERO DYNAMICS ANALYSIS 

From the definition of linear velocity in Eq. (5.6),  

𝐕𝐕 = 𝐳𝐳2 − 𝐑𝐑T�−𝐏̇𝐏d + 𝑘𝑘1𝐳𝐳1� + 𝛅𝛅                 (5.35) 

there would be a time after which 𝐕𝐕 remains bounded. Because 𝐳̇𝐳1 = 𝐑𝐑𝐑𝐑 − 𝐏̇𝐏d, 𝐳̇𝐳1 

will remain bounded as well. From the definition of angular velocity in Eq. (5.17), 

𝛚𝛚 = −𝛅𝛅n𝐓𝐓(𝛅𝛅n𝛅𝛅n𝐓𝐓)−1 �𝐳𝐳3 − 𝑔𝑔𝐌𝐌𝐑𝐑T𝐞𝐞3 − 𝐌𝐌𝐑𝐑T 𝐛𝐛
𝑚𝑚
−𝐌𝐌𝐑𝐑T�−𝐏̈𝐏d + 𝑘𝑘1𝐳̇𝐳1� − 𝑘𝑘2𝐌𝐌𝐳𝐳2� (5.36) 

𝛚𝛚 will remain bounded since 𝐳𝐳1, 𝐳𝐳2, 𝐳𝐳3 converge to zero exponentially. Thus, inner 

states would not escape to infinity. 
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Chapter 6 INTERCONNECTION SYSTEM ANALYSIS 

Stability of the interconnected system of the proposed observer and the controller was 

addressed and analyzed in this chapter, followed by experiments for a real quadrotor. 

The Kalman-Bucy filter used for estimating the unknown parameters is exponentially 

stable if the linear time-varying system specified in Eq. (2.18) is uniformly complete 

observable. This requires that the linear dependence of the functions in (4.46a), (4.46b), 

and (4.46c) must happen uniformly throughout all time and that each individual function 

must not degenerate into another. Thus, given sufficiently rich control signals, the 

parameter errors converge exponentially, and are independently of the convergence of 

the trajectory tracking errors. 

 

For the proposed controller introduced in chapter 5, it was assumed that the controller 

design procedure used the correct parameters. However, if a connection of the observer 

and controller was considered, the estimated parameters �1
𝑚𝑚
��  and �𝐛𝐛

𝑚𝑚
��  would replace 

the correct parameters 1
𝑚𝑚

 and 𝐛𝐛
𝑚𝑚

. To this effect, it was triggered to analyze the altered 

controlling algorithm in the same fashion in chapter 5. In this chapter onwards, define 

𝜁𝜁1 = 1
𝑚𝑚

, 𝛇𝛇2 = 𝐛𝐛
𝑚𝑚

, 𝜁𝜁1� = �1
𝑚𝑚
�� , 𝛇𝛇2� = �𝐛𝐛

𝑚𝑚
��  for calculation convenience. When correct 

parameters were used, Eq. (5.20) became 

𝑉̇𝑉3 = −∑ 𝑘𝑘𝑖𝑖𝐳𝐳𝑖𝑖T𝐳𝐳𝑖𝑖3
𝑖𝑖=1 + 𝐳𝐳1T𝐑𝐑(𝐳𝐳2 + 𝛅𝛅)               (6.1) 

with control variables 𝐓𝐓 = �
0
0

𝑚𝑚𝐞𝐞3T(−𝐒𝐒𝐒𝐒+ 𝐡𝐡)
�  and 𝛕𝛕 = −𝛅𝛅n𝐓𝐓(𝛅𝛅n𝛅𝛅n𝐓𝐓)−1�𝐡̇𝐡n + 𝑘𝑘3𝐳𝐳3 +

𝐳𝐳2n�. 

Now, using estimated parameters that came out of the observer, all of the original terms 

that contained 𝜁𝜁1�  and 𝛇𝛇2�  were placed with an overbar in Eq. (5.20): 

𝐓𝐓� = �
0
0

1
𝜁𝜁1�
𝐞𝐞3T(−𝐒𝐒𝐒𝐒+ 𝐡̂𝐡)

�                    (6.2) 

and 

   𝛕𝛕� = −𝛅𝛅n𝐓𝐓(𝛅𝛅n𝛅𝛅n𝐓𝐓)−1 �𝐡̇𝐡n� + 𝑘𝑘3𝐳𝐳3� + 𝐳𝐳2n�                           (6.3) 



37 
 

           = −𝛅𝛅n𝐓𝐓(𝛅𝛅n𝛅𝛅n𝐓𝐓)−1 �𝐌𝐌𝐌𝐌2

+ 𝐌𝐌�−𝑔𝑔𝐒𝐒𝐑𝐑T𝐞𝐞3 − 𝐒𝐒𝐑𝐑T𝛇𝛇2� + 𝐑𝐑T𝛇𝛇2̇� − 𝐒𝐒𝐑𝐑T�−𝐏̈𝐏d + 𝑘𝑘1𝐳̇𝐳1�

+ 𝐑𝐑T�−𝐏𝐏d + 𝑘𝑘1𝐳̈𝐳1� � + 𝑘𝑘2𝐳̇𝐳2� � + 𝑘𝑘3(𝛅𝛅n𝛚𝛚 + 𝐡𝐡n�)� 

Let 𝐏𝐏1 = 𝐌𝐌𝐌𝐌2 + 𝑘𝑘3𝛅𝛅n𝛚𝛚 − 𝑔𝑔𝐌𝐌𝐌𝐌𝐑𝐑T𝐞𝐞3 − 𝐌𝐌𝐌𝐌𝐑𝐑T�−𝐏̈𝐏d + 𝑘𝑘1𝐳̇𝐳1� − 𝐌𝐌𝐑𝐑T𝐏𝐏d, so that all of 

the remaining terms include estimated terms 𝜁𝜁1�  and 𝛇𝛇2� , then 

          𝛕𝛕� = −𝛅𝛅n𝐓𝐓(𝛅𝛅n𝛅𝛅n𝐓𝐓)−1�𝐏𝐏1 − 𝐌𝐌𝐌𝐌𝐑𝐑T𝛇𝛇2� + 𝑘𝑘1𝐌𝐌𝐑𝐑T𝐳̈𝐳1� + 𝑘𝑘2𝐌𝐌𝐳̇𝐳2� + 𝑘𝑘3𝐌𝐌𝐡̂𝐡� 

              = −𝛅𝛅n𝐓𝐓(𝛅𝛅n𝛅𝛅n𝐓𝐓)−1 �𝐏𝐏1 − 𝐌𝐌𝐌𝐌𝐑𝐑T𝛇𝛇2� + 𝑘𝑘1𝐌𝐌𝐑𝐑T�𝑔𝑔𝐞𝐞3 + 𝛇𝛇2� − 𝜁𝜁1�𝐑𝐑𝐑𝐑 −

                𝐏̈𝐏d� + 𝑘𝑘2𝐌𝐌�−𝐒𝐒(𝐳𝐳2 + 𝛅𝛅) − 𝜁𝜁1�𝐓𝐓� + 𝐡̂𝐡 − 𝑘𝑘2𝐳𝐳2� + 𝑘𝑘3𝐌𝐌𝐡̂𝐡 + 𝐌𝐌𝐑𝐑T𝛇𝛇2̇� �  

Let 𝐏𝐏2 = 𝐏𝐏1 + 𝑘𝑘1𝑔𝑔𝐌𝐌𝐑𝐑T𝐞𝐞3 − 𝑘𝑘1𝐌𝐌𝐑𝐑T𝐏̈𝐏d − 𝑘𝑘2𝐒𝐒(𝐳𝐳2 + 𝛅𝛅) − 𝑘𝑘22𝐌𝐌𝐳𝐳2 , so that all of the 

remaining terms include estimated terms 𝜁𝜁1�  and 𝛇𝛇2� , then 

           𝛕𝛕� = −𝛅𝛅n𝐓𝐓(𝛅𝛅n𝛅𝛅n𝐓𝐓)−1 �𝐏𝐏2 − 𝐌𝐌𝐌𝐌𝐑𝐑T𝛇𝛇2� + 𝑘𝑘1𝐌𝐌𝐑𝐑T𝛇𝛇2� − 𝑘𝑘1𝐌𝐌𝐑𝐑T𝜁𝜁1�𝐑𝐑𝐓𝐓� −

                    𝑘𝑘2𝐌𝐌𝜁𝜁1�𝐓𝐓�   + (𝑘𝑘2 + 𝑘𝑘3)𝐌𝐌𝐡̂𝐡 + 𝐌𝐌𝐑𝐑T𝛇𝛇2̇� �  

              = −𝛅𝛅n𝐓𝐓(𝛅𝛅n𝛅𝛅n𝐓𝐓)−1 �𝐏𝐏2 + 𝐌𝐌(𝑘𝑘1𝐈𝐈3 −  𝐒𝐒)𝐑𝐑T𝛇𝛇2� − (𝑘𝑘1 +

                𝑘𝑘2)𝐌𝐌𝜁𝜁1�
1
𝜁𝜁1�
𝐞𝐞3T�−𝐒𝐒𝐒𝐒+ 𝐡̂𝐡�𝐞𝐞3 + (𝑘𝑘2 + 𝑘𝑘3)𝐌𝐌𝐡̂𝐡 + 𝐌𝐌𝐑𝐑T𝛇𝛇2̇� �  

              = −𝛅𝛅n𝐓𝐓(𝛅𝛅n𝛅𝛅n𝐓𝐓)−1 �𝐏𝐏2 + 𝐌𝐌(𝑘𝑘1𝐈𝐈3 − 𝐒𝐒)𝐑𝐑T𝛇𝛇2� + (𝑘𝑘1 + 𝑘𝑘2)𝐌𝐌𝐞𝐞3T𝐒𝐒𝐒𝐒𝐞𝐞3 −

                (𝑘𝑘1 + 𝑘𝑘2)𝐌𝐌𝐞𝐞3T𝐡̂𝐡𝐞𝐞3 + (𝑘𝑘2 + 𝑘𝑘3)𝐌𝐌𝐡̂𝐡 + 𝐌𝐌𝐑𝐑T𝛇𝛇2̇� �  

              = −𝛅𝛅n𝐓𝐓(𝛅𝛅n𝛅𝛅n𝐓𝐓)−1 �𝐏𝐏2 + 𝐌𝐌(𝑘𝑘1𝐈𝐈3 − 𝐒𝐒)𝐑𝐑T𝛇𝛇2� + (𝑘𝑘1 + 𝑘𝑘2)𝐌𝐌𝐞𝐞3T𝐒𝐒𝐒𝐒𝐞𝐞3 −

                (𝑘𝑘1 + 𝑘𝑘2)𝐌𝐌𝐞𝐞3T�𝑔𝑔𝐑𝐑T𝐞𝐞3 + 𝐑𝐑T𝛇𝛇2� + 𝐑𝐑T�−𝐏̈𝐏d + 𝑘𝑘1𝐳̇𝐳1� + 𝑘𝑘2𝐳𝐳2�𝐞𝐞3 +

                (𝑘𝑘2 + 𝑘𝑘3)𝐌𝐌�𝑔𝑔𝐑𝐑T𝐞𝐞3 + 𝐑𝐑T𝛇𝛇2� + 𝐑𝐑T�−𝐏̈𝐏d + 𝑘𝑘1𝐳̇𝐳1� + 𝑘𝑘2𝐳𝐳2� +

                               𝐌𝐌𝐑𝐑T𝛇𝛇2̇� �  

Let 𝐏𝐏3 = 𝐏𝐏2 + (𝑘𝑘1 + 𝑘𝑘2)𝐌𝐌𝐞𝐞3T𝐒𝐒𝐒𝐒𝐞𝐞3 − (𝑘𝑘1 + 𝑘𝑘2)𝐌𝐌𝐞𝐞3T�𝑔𝑔𝐑𝐑T𝐞𝐞3 + 𝐑𝐑T�−𝐏̈𝐏d + 𝑘𝑘1𝐳̇𝐳1� +

𝑘𝑘2𝐳𝐳2�𝐞𝐞3 + (𝑘𝑘2 + 𝑘𝑘3)𝐌𝐌�𝑔𝑔𝐑𝐑T𝐞𝐞3 + 𝐑𝐑T�−𝐏̈𝐏d + 𝑘𝑘1𝐳̇𝐳1� + 𝑘𝑘2𝐳𝐳2� , so that all of the 

remaining terms include estimated terms 𝜁𝜁1�  and 𝛇𝛇2� , then 

            𝛕𝛕� = −𝛅𝛅n𝐓𝐓(𝛅𝛅n𝛅𝛅n𝐓𝐓)−1 �𝐏𝐏3 + 𝐌𝐌(𝑘𝑘1𝐈𝐈3 − 𝐒𝐒)𝐑𝐑T𝛇𝛇2� − (𝑘𝑘1 +

                𝑘𝑘2)𝐌𝐌𝐞𝐞3T𝐑𝐑T𝛇𝛇2� 𝐞𝐞3 + (𝑘𝑘2 + 𝑘𝑘3)𝐌𝐌𝐑𝐑T𝛇𝛇2� + 𝐌𝐌𝐑𝐑T𝛇𝛇2̇� �  
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              = −𝛅𝛅n𝐓𝐓(𝛅𝛅n𝛅𝛅n𝐓𝐓)−1 �𝐏𝐏3 + (𝑘𝑘1 + 𝑘𝑘2 + 𝑘𝑘3)𝐌𝐌𝐑𝐑T𝛇𝛇2� −𝐌𝐌𝐒𝐒𝐑𝐑T𝛇𝛇2� − (𝑘𝑘1 +

                𝑘𝑘2)𝐌𝐌𝐞𝐞3T𝐑𝐑T𝛇𝛇2� 𝐞𝐞3 + 𝐌𝐌𝐑𝐑T𝛇𝛇2̇� �  

Define 𝜁𝜁1� = 𝜁𝜁1 − 𝜁𝜁1�  and 𝛇𝛇2� = 𝛇𝛇2 − 𝛇𝛇2� , Eq. (5.20) became 

  𝑉̇𝑉3 = −∑ 𝑘𝑘𝑖𝑖𝐳𝐳𝑖𝑖T𝐳𝐳𝑖𝑖3
𝑖𝑖=1 + 𝐳𝐳1T𝐑𝐑(𝐳𝐳2 + 𝛅𝛅) +                        (6.4) 

            𝐳𝐳3T �(𝑘𝑘1 + 𝑘𝑘2 + 𝑘𝑘3)𝐌𝐌𝐑𝐑T𝛇𝛇2� −𝐌𝐌𝐒𝐒𝐑𝐑T𝛇𝛇2� − (𝑘𝑘1 + 𝑘𝑘2)𝐌𝐌𝐞𝐞3T𝐑𝐑T𝛇𝛇2� 𝐞𝐞3 + 𝐌𝐌𝐑𝐑T𝛇𝛇2̇� � 

The closed-loop system can be regarded as a perturbed system with state 𝐳𝐳1, 𝐳𝐳2, 𝐳𝐳3 

and perturbations 𝛇𝛇2� , 𝛇𝛇2̇� . Since the velocities 𝐕𝐕 and 𝛚𝛚 remain bounded for all time, 

the matrix 𝐒𝐒 remain bounded. Thus, the perturbed system is locally Lipschitz in the 

state and perturbations. To simplify the result, consider �𝛇𝛇�� = max(�𝛇𝛇2� �, �𝛇𝛇2̇��), 𝐳𝐳 =

�
𝐳𝐳1
𝐳𝐳2
𝐳𝐳3
�. And notice that from Eq. (5.31), when large 𝛾𝛾 is chosen, an upper bound on the 

derivative of the Lyapunov function can be expressed as 

𝑉̇𝑉3 ≤ −𝑘𝑘‖𝐳𝐳‖�‖𝐳𝐳‖ − 𝐵𝐵𝛇𝛇��                   (6.5) 

where 𝑘𝑘 > 0 and it depends on 𝑘𝑘1, 𝑘𝑘2, 𝛾𝛾. 𝐵𝐵 is a positive constant. For sufficiently 

large tracking errors, 𝑉̇𝑉3 is negative definite. According to the theorem in section 2.2.5, 

the closed-loop system is locally input-to-state stable to perturbations 𝛇𝛇2�  and 𝛇𝛇2̇� . 

Because the external perturbations arising from the estimation errors are exponential 

stable, the interconnection of the proposed observer and the controller is locally 

asymptotically stable. 

 

The interconnected system of quadrotor, the proposed observer and the proposed 

controller was implemented in SIMULINK environment, as shown in figure 14. The 

controller was fed with estimated values of the unknown parameters that came from 

the observer, namely 𝜁𝜁1� = �1
𝑚𝑚
�� , 𝛇𝛇2� = �𝐛𝐛

𝑚𝑚
�� . Note that one of the control variable 𝛕𝛕 

was calculated inside the observer due to the problem of algebraic loops. 

 

The overall interconnected system can be simulated by setting the noise level in the 

Kalman-Bucy filter to zero. Specifically, the mass of the quadrotor 𝑚𝑚 = 0.206 kg, the 

gravity 𝑔𝑔 = 9.7877 m/s2, and external force disturbance 𝐛𝐛𝐸𝐸 = �
0.3
0.2
0.1

� Newton. Initial 
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position  𝐏𝐏(𝑡𝑡0) = �
0
0
−1

�  m, initial linear and angular velocities were zero. For the 

observer, set initial guess of the mass   𝑚𝑚�(𝑡𝑡0) = 0.1  kg, and initial external force 

𝐛̂𝐛𝐸𝐸 (𝑡𝑡0) = �
0
0
0
�  Newton. By assumption, the desired trajectory was a smooth and 

bounded function parametrized in time. Here, it was assumed to be a simple circle with 

radius of 1.2 𝑚𝑚 defined as 

�
𝑥𝑥(𝑡𝑡) = 1.2 cos 𝑡𝑡
𝑦𝑦(𝑡𝑡) = 1.2 sin 𝑡𝑡
𝑧𝑧(𝑡𝑡) = −1

       𝑡𝑡 ≥ 0                   (6.6) 

Set control parameters 𝑘𝑘1 = 4.5, 𝑘𝑘2 = 4, 𝑘𝑘3 = 3, and 𝛅𝛅 = �
0
0

0.15
� m/s. 

 
Figure 14. Quadrotor, observer and controller model 

 

After simulation, errors of unknown parameters and backstepping errors were checked, 

shown in the following figures. As indicated from figures below, the unknown 

parameters 1
𝑚𝑚

 and 𝐛𝐛
𝑚𝑚

 converged to a small neighborhood around zero after a while. 

Notice that the error for the external force along z-axis was larger than those along x-
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axis and y-axis. This was due to the fact that the initial estimation of the mass was 

smaller than the actual mass of 0.2 𝑘𝑘𝑘𝑘, which led to a bigger control value for the thrust 

to keep the quadrotor from falling down. In such a way, the initial estimation of the 

external force along z-axis was larger than the actual value of 0.3 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  to 

“compensate” the gravity downwards in the presence of a bigger thrust upwards. 

 
Figure 15. Error propagation of unknown parameters 
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Figure 16. Error propagation of backstepping error 𝐳𝐳1 

 

 
Figure 17. Error propagation of backstepping error 𝐳𝐳2 

 

 
Figure 18. Error propagation of backstepping error 𝐳𝐳3 
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As indicated in the figures above, 𝐳𝐳1, 𝐳𝐳2,  𝐳𝐳3 converged to desired tracking dynamics 

in a while. When the estimated parameters approached their real values at around 55 𝑠𝑠, 

the tracking errors approached equilibrium points near zero. As derived before, the 

position error 𝐳𝐳1 converged to a constant in a small neighborhood around zero of a 

radius of 3 𝑐𝑐𝑐𝑐, which was favorable in practical cases. Signal propagation for the thrust 

and the torque were shown in the figure below: 

 
Figure 19. Propagation of actuation variables 

 

As indicated from the figure above, the thrust and the torque tended to stay still around 

the equilibrium points. And the third element of torque, 𝜏𝜏𝐵𝐵 𝑧𝑧, remained zero for all time 

with no contribution to the task of trajectory tracking, as proved in section 5.2. The fact 

that the thrust showed a slowly varying sinusoidal wave around 2 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 could be 

explained with the equation in section 5.2, specifically 𝐑𝐑𝑇𝑇𝐞𝐞3 = 𝑚𝑚𝑔𝑔𝐞𝐞3 + 𝐛𝐛 −𝑚𝑚𝐏̈𝐏d. As 

the time-varying term 𝐏̈𝐏d was related to the predefined trajectory, the quadrotor would 

have to tilt itself to accelerate in any directions in xy-plane. So that the term 𝐑𝐑𝑇𝑇 would 

also follow the dynamics of 𝐏̈𝐏d. The rotational matrix 𝐑𝐑 would lead the quadrotor to 

orient to the direction of linear velocity in xy-plane. Thus, 𝑇𝑇 would also vary with 

respect to time. 
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Chapter 7 EXPERIMENTAL RESULTS 

The section presented the experimental results using the proposed observer and 

controller on a real quadrotor. Experiments were conducted in MATLAB/SIMULINK 

environment that integrated an optical motion capture system, VICON, and radio 

communication with the quadrotor. VICON Bonita motion capture system played the 

role of external sensors for the quadrotor due to the lack of on-board sensors. The 

quadrotor’s position, orientation, linear velocity and angular velocity can be estimated 

with relatively low noise. A graphical representation of the overall architecture was 

shown in the figure below. 

 
 

Figure 20. Quadrotor measurement and communication architecture [18] 

 

The controller gains for the experiments were adjusted to 𝑘𝑘1 = 4.5, 𝑘𝑘2 = 3, 𝑘𝑘3 = 2, 

and 𝛅𝛅 = �
0
0

0.1
� m/s. The Kalman filter parameters of the observer were 𝐐𝐐 = 0.01𝐈𝐈7, 

𝐑𝐑 = 0.01𝐈𝐈3, and the initial covariance matrix 𝐏𝐏(𝑡𝑡0) = 𝐈𝐈7. Actual mass of the quadrotor 

was 0.206 kg. Initial guess of the mass  𝑚𝑚�(𝑡𝑡0) = 0.1 kg, and initial external force 

𝐛̂𝐛𝐸𝐸 (𝑡𝑡0) = �
0
0
0
�  Newton. The initial guess of the linear velocity was ignored here 

because the estimated linear velocity coming from the observer was not used for the 

proposed controller. The quadrotor was initially placed at Initial position  𝐏𝐏(𝑡𝑡0) =
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�
−0.06
0.83
−0.24

�  m, with initial orientation  𝐑𝐑(𝑡𝑡0) = 𝐈𝐈3 , and zero initial linear and angular 

velocities. The observer was active right from the start of the experiments. 

 

Two experiments were conducted with different desired trajectories. Next two sections 

discussed experimental results, separately. 

7.1 EXPERIMENT RESULTS OF FOLLOWING A CIRCLE IN 2D SPACE 

The first experiment evaluated the performance of the proposed controller with an oval 

trajectory, namely a circle in two-dimensional plane described by: 

𝐏𝐏d(𝑡𝑡) = �
1.2 cos 𝑡𝑡
1.2 sin 𝑡𝑡
−1

�                   𝑡𝑡 ≥ 0            (7.1) 

 
Figure 21. Comparison of the desired reference trajectory and the actual trajectory 

 

 

 

 

 

 

 

 

 

 

Figure 22. Time evolution of errors 
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Figure 23. Time evolution of actuation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24. Time evolution of estimated parameters 

 

A comparison between the desired trajectory and the actual one was shown in figure 21. 

In spite of initial errors in position, linear velocity and angular velocity, the quadrotor 

gradually approached the oval trajectory, shown by the curve in blue.  
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Figure 22 showed the evolution of errors. Quantitively, after initial transient for about 

2 seconds, the position error had not gone beyond 0.1 meters. Meanwhile, the other 

two errors converged also within seconds. In steady state, the position error was 

bounded by 0.05 meters in magnitude. The steady state errors were due to: 

• theoretical upper bounds of the errors, specified in Eq. (5.34) and Eq. (6.5); 

• imperfect modeling of the quadrotor. There existed aerodynamic forces that 

depended on the states of the quadrotor; 

• a non-constant external force disturbance in the surrounding. The quadrotor 

could suffer varying external disturbance like the wind disturbance, uneven 

mass distribution; 

• varying power output from the on-board battery. 

 

In figure 24, the estimated parameters slowly converged to a neighborhood around their 

actual values. Estimated values of the external forces along x-axis and y-axis in earth 

frame were better estimated than that along z-axis. This was due to the fact that the 

dynamics of the estimated mass and the estimated external force disturbance was 

closely related to the thrust. And the thrust always pointed nearly upwards in earth frame, 

making the estimated value of the estimated external force disturbance along z-axis 

varying in order to stabilize the quadrotor. Within 80  seconds, the estimated 

parameters entered steady states. Reasons that the estimated parameters, especially the 

estimated mass and the estimated external force disturbance along z-axis, did not 

converge to their correct parameters were: 

• almost constant rotational matrix after seconds, leading to a similar result of that 

simulated in Example 1, section 4.2; 

• the quadrotor was indeed stabilized to follow the desired trajectory, and it could 

work with a smaller estimated value of its mass and its external force disturbance 

along z-axis. 

7.2 EXPERIMENT RESULTS OF FOLLOWING A LEMNISCATE IN 3D 

SPACE 

The second experiment evaluated the performance of the proposed controller with a 

lemniscate trajectory in three-dimensional space described by: 
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𝐏𝐏d(𝑡𝑡) = 1.3𝐑𝐑𝑥𝑥(− 𝜋𝜋
18

)𝐑𝐑𝑦𝑦(0)𝐑𝐑𝑧𝑧(0)

⎣
⎢
⎢
⎡
sin𝜙𝜙(𝑡𝑡) cos𝜙𝜙(𝑡𝑡)

(cos𝜙𝜙(𝑡𝑡))2+1
sin𝜙𝜙(𝑡𝑡)

(sin𝜙𝜙(𝑡𝑡))2+1
−1 ⎦

⎥
⎥
⎤

                  𝑡𝑡 ≥ 0     (7.2) 

where 𝐑𝐑𝑥𝑥, 𝐑𝐑𝑦𝑦, and 𝐑𝐑𝑧𝑧 were rotation matrices defined by Z-Y-X fixed angles. That 

was, the original trajectory rotated first about z-axis defined in earth frame, then rotated 

about y-axis, finally about z-axis. 𝜙𝜙(𝑡𝑡)  followed 𝜙̇𝜙(𝑡𝑡) = 𝑉𝑉√sin2 𝑡𝑡 + 1 , where 𝑉𝑉 

was the desired speed. In the experiment, 𝑉𝑉 = 1 m/s. 

 
Figure 25. Comparison of the desired reference trajectory and the actual trajectory 

 

 

 

 

 

 

 

 

 

 

 

Figure 26. Time evolution of errors 
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Figure 27. Time evolution of actuation 

 

 
Figure 28. Time evolution of estimated parameters 

 

As shown in the figures above, similar patterns of all signals could be seen when the 

quadrotor was following the lenmiscate trajectory in three-dimensional space. The 

estimated parameters became smaller from 120 seconds onwards, which may due to 

less output power from battery. 
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Chapter 8 PROBLEMS ENCOUNTERED 

5.1 NOISE GENERATION FOR SIMULATION 

Practically, the noise came from the uncertainty in modeling, disturbance in the 

surroundings, etc. The noise was modeled only in chapter 4 for evaluation of the 

performance of the observer. Here, white noise was generated by randomly distributed 

discrete sampling points. However, the Kalman-Bucy filter worked only in continuous 

time case. Thus, the parameters for Kalman-Bucy filter may not guarantee optimal 

convergence rate for the generated noise. For chapter 6 where the proposed controller 

was involved, there were no noised added in the dynamics of the overall system. On 

one hand, the modeling of the quadrotor itself did include the state noise. On the other 

hand, the estimated parameters came from the observer, which depended on the 

dynamics of linear velocity. However, the linear velocity was in fact accurate enough. 

Moreover, algebraic loop errors would occur if manually generated white noise was 

added into the system, which was not desirable.  

5.2 ALGEBRAIC LOOPS IN SIMULINK 

Algebraic loops occurred in simulation of the interconnected system, specified in 

chapter 6. Normally, an algebraic loops occurred when there were feedforward or 

feedback loops inside a system such that MATLAB itself was unable to solve for the 

initial values inside the loops. In such a way, an algebraic variable would go around 

within the problematic loop. Some common ways to fix the problem were to specify 

manually the initial values by adding a delay block or initial condition block inside 

SIMULINK. However, these ways would change the proposed control law, which was 

not desirable. Thus, each algebraic loop was checked and solved separately by changing 

the block design in SIMULINK. In this specific case, when the thrust and the torque 

signals were put together inside the same block for controller, the update control law 

for the torque depended on estimated values of derivatives of unknown parameters. 

However, those values were inputs for the observer block and could not deliver out to 

other blocks at the very start of the simulation. Thus, the control law for the torque was 

calculated inside the observer rather than inside the controller. And the new 

configuration solved the occurrence of algebraic loops. 
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Chapter 9 CONCLUSIONS 

The dynamics of the quadrotor was derived through basic physics and was simplified 

within reasonable level. Firstly, the model for an open loop model of the quadrotor in 

Simulink was created for observation and control purposes. The open loop model was 

tested with inputs defined arbitrarily to verify its reliability. Secondly, in the case that 

some system parameters were unknown, the dynamics equation was transformed into a 

linear time-varying one that can mimic exactly the behavior of the nonlinear system 

dynamics. Observability of the linear system was checked and with the use of Kalman-

Bucy filter, the error dynamics of all of the states converged to zero in short time interval. 

The effects of the self-tuned noise levels in the design of Kalman-Bucy filter were 

exploited. Thirdly, a nonlinear control algorithm was proposed. Using correct values of 

unknown parameters, the controller guaranteed global exponential stability of the 

tracking error. Lastly, the interconnected system of the model, the observer, and the 

controller was proved and assessed to have local asymptotically stability. Adaptive 

control of the quadrotor using the designed feedback system was achieved by reacting 

to uncertainties in modeling and the surroundings of the quadrotor. 
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Chapter 10 RECOMMENDATIONS FOR FUTURE RESEARCH 

7.1 DIFFERENT KALMAN FILTER PARAMETERS FOR THE OBSERVER 

For above all simulation and experiments, the parameters for the Kalman-Bucy filter, 

namely, 𝐐𝐐  and 𝐑𝐑 , were unchanged. In fact, these two parameters influenced the 

convergence rate of the estimated states. Given low noise level in the linear velocity, 

these two parameters would have to be a lot smaller to guarantee optimal convergence 

rate. It is expected that smaller 𝐐𝐐 and 𝐑𝐑 will lead a shorter time for estimated 𝑚𝑚 and 

𝐛𝐛 to converge to their real values. However, the primary concern in this article was to 

implement trajectory tracking for the quadrotor rather than estimating parameters, as 

long as the estimate error dynamics was stable. 

7.2 EXPERIMENTS IN VARIOUS SETTINGS 

Although the mass and external force disturbance were assumed to be constant for all 

time, they can be varying with time in the presence of an observer that guarantees their 

convergence to their actual values. For this reason, further experiments can be 

conducted within some common scenarios when: 

• the quadrotor experiences wind disturbance in its flying zone; 

• sudden mass change in the quadrotor such as caching or releasing loads; 

• unpredictable output from the onboard motors such as sudden change in thrust. 

It can be made deliberately by changing the control law at some time. 

7.3 RESEARCH INTO THE INERTIAL MATRIX 

Although the inertia matrix of the quadrotor was assumed a scalar matrix in the 

dynamics equations of the quadrotor, it would be useful either when one wanted to 

estimate it or when the control algorithm involved the inertia matrix. When attempting 

to estimate the inertia matrix through the state and output transformation, problems 

occur due to the nonlinear nature in the dynamics. Assume that the inertia matrix is a 

diagonal one 𝐈𝐈𝐵𝐵 = �
I𝑥𝑥𝑥𝑥 0 0
0 I𝑦𝑦𝑦𝑦 0
0 0 I𝑧𝑧𝑧𝑧

�, 𝛚𝛚𝐵𝐵 = �
𝛚𝛚𝐵𝐵 𝑥𝑥

𝛚𝛚𝐵𝐵 𝑦𝑦

𝛚𝛚𝐵𝐵 𝑧𝑧

� and 𝛕𝛕𝐵𝐵 = �
𝛕𝛕𝐵𝐵 𝑥𝑥

𝛕𝛕𝐵𝐵 𝑦𝑦

𝛕𝛕𝐵𝐵 𝑧𝑧

�. Then through 

the computation with Eq. (3.18), one could get: 



52 
 

𝛚̇𝛚𝐵𝐵 =

⎣
⎢
⎢
⎢
⎡
I𝑧𝑧𝑧𝑧−I𝑦𝑦𝑦𝑦
I𝑥𝑥𝑥𝑥

𝛚𝛚𝐵𝐵 𝑦𝑦 𝛚𝛚𝐵𝐵 𝑧𝑧 −
1
I𝑥𝑥𝑥𝑥

𝛕𝛕𝐵𝐵 𝑥𝑥

I𝑥𝑥𝑥𝑥−I𝑧𝑧𝑧𝑧
I𝑦𝑦𝑦𝑦

𝛚𝛚𝐵𝐵 𝑥𝑥 𝛚𝛚𝐵𝐵 𝑧𝑧 −
1
I𝑦𝑦𝑦𝑦

𝛕𝛕𝐵𝐵 𝑦𝑦

I𝑦𝑦𝑦𝑦−I𝑥𝑥𝑥𝑥
I𝑧𝑧𝑧𝑧

𝛚𝛚𝐵𝐵 𝑥𝑥 𝛚𝛚𝐵𝐵 𝑦𝑦 −
1
I𝑧𝑧𝑧𝑧

𝛕𝛕𝐵𝐵 𝑧𝑧⎦
⎥
⎥
⎥
⎤

                (10.1) 

where the elements of the inertia matrix were not linear with state and thus cannot 

follow the building methods of LTV mimicking system as in this work. Attempts could 

be made in finding a proper transformation in the form of 𝐓𝐓𝑥𝑥�𝐱𝐱(𝑡𝑡)� = �
𝐱𝐱

𝐓𝐓𝑎𝑎�𝐱𝐱(𝑡𝑡)��, and 

the observability of the resulting mimicking system should be checked afterwards to 

guarantee the observability of the nonlinear system described in Eq. (5.1). 
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