

Manage Your Mobile Time

University of Macau

Faculty of Science and Technology

Manage Your Mobile Time

by

Ao Ieong Kit Ha, Student No: DB027016

Final Project Report submitted in partial fulfillment

of the requirements of the Degree of

Bachelor of Science in Software Engineering

Project Supervisor

Dr. Zhuang Yan, Sofia

08 October 2014

Manage Your Mobile Time

DECLARATION

I sincerely declare that:

1. I and my teammates are the sole authors of this report,

2. All the information contained in this report is certain and correct to the best of

my knowledge,

3. I declare that the thesis here submitted is original except for the source

materials explicitly acknowledged and that this thesis or parts of this thesis

have not been previously submitted for the same degree or for a different

degree, and

4. I also acknowledge that I am aware of the Rules on Handling Student

Academic Dishonesty and the Regulations of the Student Discipline of the

University of Macau.

Signature : _________________________

Name : Ao Ieong Kit Ha

Student No. : DB027016

Date : 08 October 2014

Manage Your Mobile Time

ACKNOWLEDGEMENTS

I would like to express my utmost gratitude to UM for providing the opportunity to

carry out a project as a partial fulfillment of the requirement for the degree of

Bachelor of Science.

Throughout this project, I was very fortunate to receive the guidance and

encouragement from my supervisor Sofia. She gave us a lot of suggestions on

implementing the project and instruct us to think more from the user’s point of view.

I’ve learnt many in this project and in her instruction. I express my sincere thanks to

her.

Last but not least, I want to thank my partner Ho Sin Nga Veronica. We worked very

hard and we fight together in this project. This project can’t finish without her

intension.

Manage Your Mobile Time

ABSTRACT

Out of the world’s estimated 7 billion people, 6 billion have access to mobile phones.

The average smartphone user tends to spend around two hours a day using their

gadget, according to a study. While time management is important for improving

productivity, people are interested in finding out exactly how much time they have

spent on their smartphone daily.

In particular, people may like to know how much time they have used in the various

activities per day, including browsing the internet, checking social networks, listening

to music, playing games, making calls, text messaging, checking/writing emails,

reading books, watching TV/films, taking photographs, and etc. Statistics about time

spent on a particular activity can be more specific (for example, people spend

different time on different games). The project aims in helping people to know more

about their time spent on their smartphone per day, thus opt for better time

management.

To achieve the project goal – to help users to manage their time, we implement an

application for android OS to track the time usage of the mobile phone. Since IOS

can’t provide enough permission for us to implement, so the project we only focus on

implement the app in android OS.

Since my partner and me have not implemented app yet. So we do a lot of study and

research of implementing app and understanding android OS at the beginning.

In this report is mainly talk about the main function of the app. Besides, including our

understanding of developing the app. Other function in this app will be introduced by

my partner Ho Sin Nga.

Manage Your Mobile Time

TABLE OF CONTENTS

CHAPTER 1. INTRODUCTION ... 1

1.1 Background .. 1

1.2 Objective .. 1

1.3 Work flow .. 1

1.4 Work Scheduling .. 1

1.5 Task Allocation ... 1

1.6 Environment .. 1

CHAPTER 2. LITERATURE SURVEY/RELATED WORK 5

2.1 Related application .. 5

2.2 Eclipse .. 5

2.3 Android SDK ... 5

2.4 Java SE Development Kit (JDK) ... 6

2.5 ADT plugin .. 6

2.6 AchartEngine .. 6

2.7 GenyMotion ... 6

CHAPTER 3. FUNCTIONAL SPECIFICATION .. 7

CHAPTER 4. SOFWARE DESIGN SPECIFICATION .. 9

4.1 Flow chart .. 10

4.2 Database design ... 13

CHAPTER 5. IMPLEMENTATION NARRATIVE AND DESCRIPTION 16

5.1 Programming language .. 16

5.2 Software environment ... 16

5.3 Implementation narrative .. 16
5.3.1 Implementation ... 16
5.3.2 Difficulty .. 21

Manage Your Mobile Time

CHAPTER 6. EVALUATION ... 22

6.1 Testing ... 22

6.2 Comparison .. 22

CHAPTER 7. SUMMARY ... 28

7.1 Future work.. 28

7.2 Conclusion .. 29

CHAPTER 8. REFERENCES .. 30

Manage Your Mobile Time

LIST OF FIGURES

Figure 1: Data Flow Diagram .. 9

Figure 2: Flow chart of the app usage function. .. 11

Figure 3: Flow chart of the usage chart function ... 12

Figure 4: Flow chart of monitoring battery.. 12

Figure 5: Flow chart of checking screen status. ... 13

Figure 6: the relationship between the table AppTime and TotalTable 14

Figure 7: The new record of App A in AppTime Table .. 14

Figure 8: Update the record of App A in TotalTable ... 14

Figure 9: The PowerTable ... 15

Figure 10: The CheckScreen table ... 15

Figure 11: Unlock Times Checking ... 20

Figure 12: MobileTime’s size .. 22

Figure 13: The size of App Timer Mini 2 and AppUsage ... 23

Figure 14: consumption picture captured in 26
th

 April .. 23

Figure 15: consumption picture captured in 19
th

 May ... 24

Figure 16: consumption picture captured in 30
th

 May ... 24

Figure 17: consumption picture captured in 5
th

 June ... 25

Figure 18: App Timer Mini 2 page .. 26

Figure 19: App Timer Mini 2 Alert page ... 26

Figure 20: AppUsage screenshot ... 27

Manage Your Mobile Time

LIST OF TABLES

Table 1: Work Scheduling ... 2

Table 2: Task allocation ... 4

Table 3: function Description .. 7

Table 4: Flag Description... 21

Manage Your Mobile Time

1 of 29 08 October 2014

CHAPTER 1. INTRODUCTION

1.1 Background

Nowadays, people have at least one smart phone in their pocket. Smart phone is so

useful that people are more and more rely on it. We use it to check mails, browse the

internet, play games, take photos, listen to music etc. If we spend too much time day

by day, it will cause neck pain, short sight. Our app can show the usage of each

application in your smart phone, also you can set up a reminder to alert you to put

down your phone.

1.2 Objective

The objective of this project is to manage user’s time to use smart phone so that user

don’t become a morbid. In the project, we develop an application to monitor the status

of the mobile usage. It shows the time of each application which in the user’s mobile.

We hope the user can reduce the time on the phone through this application.

1.3 Work flow

We list the steps of the project. There are eight parts:

 The decision of the requirement

 The APP’s design for the function

 The APP’s design for the interface

 Implementation of function

 Implementation of interface

 Testing

 Modification

 Report

1.4 Work Scheduling

Table 1 shows the workload in the given period.

1.5 Task Allocation

Table 2 shows the task allocation.

1.6 Environment

Smart phone’s operating system is mainly divided into two type: android and IOS.

Since we need a permission to access to the system to get the other application’s data

and the system’s resources, IOS cannot provide such big permission that we only

focus on the mobile in android OS. In the project we have used java, SQLite and

XML. All the collected data we stored in SQLite. The interface of the application was

Manage Your Mobile Time

2 of 29 08 October 2014

written in XML. The activity and service between the application and the database

was written by java.

Table 1: Work Scheduling

Date Work

23/09/2013 to 31/10/2013 Search the related application to see the availability in

both IOS and android.

Report the progress to our supervisor.

01/11/2013 to 15/11/2013 Study how to develop an application for android.

Study how to connect SQLite to the application.

16/11/2013 to 30/11/2013 Discussion for the functions of the application.

Report the progress to our supervisor.

01/12/2013 to 15/12/2013 Confirm the four main functions and design the

interface for the application.

Report the progress to our supervisor.

16/12/2013 to 31/01/2014 Find related information of the android system.

Study how to get the system information.

01/02/2014 to 15/03/2014 Implement the main functions: App usage, usage

chart, and reminder.

Meeting with our supervisor.

15/03/2014 to 20/03/2014 Design and create database table to save the record.

Implement the main functions: 3G/WIFI.

Meeting with our supervisor.

20/03/2014 to 04/04/2014 Improve the functions App usage & Usage Chart.

Integrate the record in database to generate the chart.

05/04/2014 to 15/04/2014 Improve the function 3G/WIFI.

Manage Your Mobile Time

3 of 29 08 October 2014

16/04/2014 to 07/05/2014 Redesign the reminder function.

 Add settings for each application.

 Add settings for reminder mode.

Draft the report.

08/05/2014 to 14/05/2014 Improve the whole application.

 Interface.

 Add a sorting feature to count time.

 Add custom setting.

15/05/2014 to 22/05/2014 Test the functions and find bugs for one week.

22/05/2014 to 28/05/2014 Fix all the bugs in the testing we found.

28/05/2014 to 05/06/2014 Write the final report

Manage Your Mobile Time

4 of 29 08 October 2014

Table 2: Task allocation

Task Responsible person

Project study Sue & Veronica

System study Sue & Veronica

Getting data Sue

Creating database Sue & Veronica

Create reminder & 3G/WIFI

functions

Veronica

Integrate all the functions Sue & Veronica

Testing Sue & Veronica

Manage Your Mobile Time

5 of 29 08 October 2014

CHAPTER 2. LITERATURE SURVEY/RELATED

WORK

At the project beginning, we focus on search the applications that are related to our

project. We hope we can find any clue in both IOS and android. Actually, we get

many in android. Android is a good platform which is a fully open-source operating

system. However, we can’t find any applications that are related to our project in IOS.

We only can find the applications that need to be installed in a jailbreak iPhone. We

start to search why iPhone don’t have such application to manage mobile time. The

answer is that iPhone blocks some permissions to protect the phone and all the

developer’s application so that no one can get such information to implement this

kind of application only if the phone is been jailbreak. A jailbreak iPhone relieves all

permissions but it makes the phone become unstable. We don’t expect the user

jailbreak the phone for our application. So we decide to give up implementing the

application in IOS, only implement an application that in android OS.

2.1 Related application

In the store, there are some related applications. They can count the time for your

usage also but some have different addition functions.

In the beginning, we spend a period of time to search them in the word ‘time’,

‘manage’ etc. However, we can’t find any related applications. We realized that may

be such application’s name didn’t have those words. We started using another word

‘count’, ‘track’, and we get a little prospect. After the research process, we found a

fact that was those applications are not been widely use.

Although we are familiar with java environment, we still need to study about the

android system and specification. To develop an application, we need to design

interface for user with XML.

2.2 Eclipse

Eclipse[1] are the tools for Java developers creating Java EE and Web applications,

including a Java IDE, tools for Java EE, JPA, JSF, Mylyn, EGit and others. In this

project, we use Eclipse for Java EE. Eclipse can install many plugins. In order to

implement our project, we need to install the plugins android SDK and ADT plugin

into Eclipse.

2.3 Android SDK

The Android SDK[2] provides us the API libraries and developer tools necessary to

build, test, and debug apps for Android. API(Application Programming Index) is a

group of library for android developer to develop android application. Android SDK

also provides a set of virtual system for us to debug. This is the core tool to implement

the application.

Manage Your Mobile Time

6 of 29 08 October 2014

2.4 Java SE Development Kit (JDK)

Java SE Development Kit (JDK)[3] is for Java Developers. Includes a complete JRE

plus tools for developing, debugging, and monitoring Java applications.

2.5 ADT plugin

Android Development Tools (ADT)[4] is a plugin for the Eclipse IDE that is designed

to give you a powerful, integrated environment in which to build Android applications.

ADT extends the capabilities of Eclipse to let you quickly set up new Android

projects, create an application UI, add packages based on the Android Framework

API, debug your applications using the Android SDK tools, and even export signed

(or unsigned) .apk files in order to distribute your application.

2.6 AchartEngine

It is user friendly that we use chart to present our data. AChartEngine[5] is a charting

library for Android applications. It currently supports the following chart types:

 line chart

 time chart

 bar chart

 pie chart

 bubble chart

 doughnut chart

 etc.

As you see, there are many charts are provided. We want to use some of them also.

But our instructor suggests us to choose a chart that is clear to express the usage is

enough. So we decided using the pie chart to show the usage.

2.7 GenyMotion

GenyMotion[6] is a fast android emulator. It has wifi feature and we can control the

battery. GenyMotion let us to simulate every environment that we will meet in real

mobile. It is an emulator for us to test and demo our project.

Manage Your Mobile Time

7 of 29 08 October 2014

CHAPTER 3. FUNCTIONAL SPECIFICATION

In our application, there are four main functions (see detail in Table 3). They are

called app usage, usage chart, reminder and 3G/WIFI. They are shown in the top of

the app, using four different tabs to divide. The parts I managed are the app usage and

usage chart. The function reminder and 3G/WIFI is implemented by my partner.

Table 3: function Description

Function Description

App usage Counting the time of each application’s usage in the smart

phone.

Usage Chart Show the application usage in the diagram by using the time

counting data.

Reminder[14] The reminder is optional. The user can set the amount of the

time of using which/which kind application. When the user uses

the application over the limit, the reminder will warn the user.

3G/WIFI[14] To show the usage of 3G/WIFI, also it shows the detail of each

application’s data usage.

The functions above are the main functions we’ll implement. The installed application

in the mobile is our app mainly concern. In addition to show the using time of the

application, the information of application will also appear in our app. The

information includes the application type, the size.

The app usage’s tab is showed the counting time of the application, it shows a ranking

of the applications by alphabet or by the time descending.

The usage chart’s tab shows a pie chart. It is according to the data that shows in the

ranking function to generate. We choose pie chart because it is clear to show what

user’s most used application is. We hope the chart can be as a warning for user when

they see in first sight.

The reminder’s tab is liked an alarm. It alerts users when the application is used over

the limit, which is set by the users themselves.

The 3G/WIFI’s tab also have a chart. The chart shows only 3G and WIFI. The detail

usage is shown below the chart.

After the main functions, we have some additional function to make our application

different. The functions below are also developed by me.

Manage Your Mobile Time

8 of 29 08 October 2014

One is to check your battery usage. When your phone’s battery is lower than the

limitation (the default is 30), it will alert you to charge your phone. The limitation and

the alert type can be set by the user.

The other is to check how many times the users turn the mobile’s screen on.

Nowadays, people rely on their mobile more and more. They don’t realize that they

turn on screen is meaningful or don’t. People have got used to play with their mobiles

consciously and even unconsciously. We hope user through this function can aware

this problem and reduce the time to turn on mobile.

Manage Your Mobile Time

9 of 29 08 October 2014

CHAPTER 4. SOFWARE DESIGN SPECIFICATION

In our project, data are very important and all the functions are relied on these data in

our database (see 錯誤! 找不到參照來源。錯誤! 找不到參照來源。). The Data

Flow Diagram doesn’t contain all tables in the database, it focuses on the activity flow

because other tables is made by my partner. My partner’s report will contain the other

in detail.

Figure 1: Data Flow Diagram

User Start service

Record the time of

each used

application

Table for

single usage

Update

database

Summary the

total time of

each

application

Table for total

usage

Show data

Create pie

chart

Compare the specify

name and total usage in

reminder

Table for

reminder Prepare the

reminder

Custom the

reminder

setting

Calculate the

3G and WIFI

flow

Update

database

Table for 3G

Open

application

Auto

start Get data

Auto start

Get data

update

update

Fetch

data

Save

data

Fetch

data

Fetch

data

Fetch

data

Fetch data

set

Save

setting

compare

Show data

Fetch

data

Moniter the
battery

Custom the
battery level

for alert

Table for
battery data

Compare with
the current

battery level

Alert the user

set

save

change

Fetch

data
compare

Auto start

moniter

Table for WIFI

Fetch

data

update

Check screen
status

Auto start

Manage Your Mobile Time

10 of 29 08 October 2014

In the Data Flow Diagram, These functions are the core function of the application.

When users open our application, it will start the service in the back-end. The service

contains several functions: tracking the usage time of the application, calculating the

3G and WIFI flow, the reminder and monitoring battery.

As you see, there are five tables in the Data Flow Diagram. But this is not the real in

our application. There are ten tables in the database actually. Because I don’t know

the details of the function that my partners handles so some tables are omitted in the

data flow diagram.

In the next, I will introduce the part that I am response for. In this project, I am

handling the app usage, usage chart, monitoring battery and checking screen status. I

will separate them to talk about.

4.1 Flow chart

First I will introduce the work flow of the app usage (see Flow chart of the app usage

function.Figure 2). When the service is start, first it checks the mobile whether is

activated. If the mobile is not activated, it won’t start counting any usage, the service

is on standby. Once the mobile is activated, then the service goes to next step – to

check whether any application is ongoing. If one application is used, the service will

temperately save the application name in memory and start to count the usage. When

the application is finished used, the application name and the usage time save to the

database immediately. And then start to check the screen again until the service is

closed by user.

Other major function is the usage chart. The chart is according to the data that the

pervious function gets then is generated. To avoid the problem that does not prompt

an error to user, I make a condition to judge the table is empty or has elements. If the

table has no elements, then the page will not show the chart and no error shows to

user. The flow chart of the usage chart function is below (see Figure 3). This function

is only activated when users open our application, so it does not have a recursion in its

flow.

Manage Your Mobile Time

11 of 29 08 October 2014

Figure 2: Flow chart of the app usage function.

Check the mobile is activated or not.

Is the mobile’s
screen on?

Start service

Check any application in mobile is
activated or not.

Is any application
currently used?

Get the application name and count
the usage.

Is the application
closed?

Save the application name and the
usage data to the database.

Is the mobile’s
screen off?

yes

no

yes

yes

yes

no

no

no

Manage Your Mobile Time

12 of 29 08 October 2014

Figure 3: Flow chart of the usage chart function

Start our application

Check the table in the database.

Is the table have any
element?

Fetch the element and calculate the
percentage.

According to the percentage and the
amount of elements to generate the

chart.

Not to generate the chart.

yes

no

The third function is monitoring the battery in order to remind the users to charge

their phone. The flow chart of monitoring battery is below (see Figure 4). We set 30%

is the default percentage for alerting user. Furthermore, users can reset the percentage

which they want our application to reminder and the remind method, and then it will

update the value to the database. When the current battery percentage is lower or

equal than the setting percentage, the alert is prompt and decrease 5% of the setting

percentage for the next alert.

Figure 4: Flow chart of monitoring battery

Start service

Check the current
battery percentage.

Is it lower than
the checking

value?

Alert user and
minus 5% of the

check value.

yes

no

Manage Your Mobile Time

13 of 29 08 October 2014

Moreover, we have a function that checking the screen status. Screen status has two

states: screen on and screen off. This is to check the users’ activity. Detect what the

user is doing.

Figure 5: Flow chart of checking screen status.

Start service

Check the screen status.

Is the screen on?

Check the user’s activity.

Does the user has
something to do?

Record it.

yes

yes

no

no

4.2 Database design

The database is used SQLite. SQLite[7] is a software library that implements a self-

contained, serverless, zero-configuration, transactional SQL database engine. SQLite

is an embedded SQL database engine, which means that our application reads and

writes in the local disk and we don’t need to create a server to hold the data. Also, it is

small and easy to configure. Next I am going to introduce the tables which I created.

In the database, my functions need four tables. In the app usage function, it uses two

tables to save data. The AppTime table save every application usage record. E.g.

Dropbox opens 10 seconds, and then Facebook opens 30 seconds. Then AppTime

table will have two records. In the AppTime table, ID is to ensure that every record is

unique. And other two columns make up a record.

Manage Your Mobile Time

14 of 29 08 October 2014

Figure 6: the relationship between the table AppTime and TotalTable

AppTime

Id: Integer
Applabel: String
Time: Integer

TotalTable

Id: Integer
AppLabel: String
Totaltime: String

Users may want to know the total usage time of each app. So TotalTable contains the

total usage of each application. In this table, id and applabel is also unique. The

application only updates the Totaltime when the applabel is appeared. The figures

below shows an example for the record updates (see Figure 7 & Figure 8).

Figure 7: The new record of App A in AppTime Table

AppTime

ID Applabel Time
1 App A 10
2 App B 5
3 App C 75
4 App A 30

Figure 8: Update the record of App A in TotalTable

TotalTable

ID Applabel Time
1 App A 40
2 App B 5
3 App C 75

The PowerTable is used by monitoring battery function. It only contains two records.

One is the minimum percentage for checking. The other is the type of alert. Both are

use an integer value to save in the content column. To distinguish these two values,

one is named power and the other is named type in the category column.

Manage Your Mobile Time

15 of 29 08 October 2014

Figure 9: The PowerTable

PowerTable

Category: String
Content: Integer

The CheckScreen table is used by the checking screen status function. It contains two

records also. One is the total time of turning screen on. The other record is the time of

turning screen on but does nothing. The purpose of this function will talk about in the

next chapter.

Figure 10: The CheckScreen table

CheckScreen

State: String
Times: Integer

Manage Your Mobile Time

16 of 29 08 October 2014

CHAPTER 5. IMPLEMENTATION NARRATIVE AND

DESCRIPTION

Since I am in charge of the App usage and usage chart two parts, so in this report I

will introduce the data structure and the function in these two parts.

5.1 Programming language

In the project we use java because it is the programming language of android

application development.

5.2 Software environment

The application needs to run in android 3.0 platform above. To have a good

performance, we suppose the phone have 2GB RAM. The minimum requirement is

1GB RAM.

5.3 Implementation narrative

5.3.1 Implementation

In this part is mainly talk about how I do the implementation step by step. The

implementation is following the design.

5.3.1.1 App Usage

As the pervious part Chapter 4 told before, the data of app usage’s accuracy effects

the usage chart’s display. So the calculation of the app usage must be correct. This

function needs a permission of retrieving the running app. Getting the application in

the mobile has a function provided in the ADT library package. Inside the function

getInfo(), I use several functions from the library to get the current using application

package name.

 public String getInfo(){

 pm = getPackageManager();

 apps = pm.getInstalledApplications(0);

 installedApps = new ArrayList<ApplicationInfo>();

 k = apps.size();

 ActivityManager am= (ActivityManager)getSystemService(ACTIVITY_SERVICE);

 recent = am.getRecentTasks(k, 1);

 List<ActivityManager.RunningTaskInfo> run = am.getRunningTasks(k);

 ActivityManager.RunningTaskInfo task = run.listIterator().next();

 String b = task.baseActivity.getPackageName();

 return b;

 }

Package name is not the name we see on the mobile. It is a unique name to identify

the application. The form of a package name is liked a website link. Our application

package name is com.mobiletime. I need to display an application name to user. So I

do a transform between package name and application name.

public String getAppLabel(){

String nameF = "";

Manage Your Mobile Time

17 of 29 08 October 2014

 for (ActivityManager.RecentTaskInfo info : recent) {

 Intent intent = info.baseIntent;

 ResolveInfo ri = pm.resolveActivity(intent, 0);

 String name = "";

 if (ri != null){

 name = ri.activityInfo.packageName;

 }

 String name2 = "";

 String name3 = "";

 ApplicationInfo a = null;

 try {

 name2 = pm.getPackageInfo(name, 0).packageName;

 } catch (NameNotFoundException e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 if (name.compareTo(name2) == 0){

 name3 = (String) pm.getApplicationLabel(a);

 nameF = name3;

 break;

 }

 }

 return nameF;

}

The method I use is first to get the recent running app and current time when the app

is in the first of the recent app’s list. Then when the app is closed or user open another

app, the system will get the current time again and do the subtractions of two times

we get before. Finally save the result to the database. This method reduces the

memory usage because it doesn’t do the calculation every second.

public Runnable work=new Runnable(){

 public void run() {

 PowerManager powerManager = (PowerManager)getSystemService(POWER_SERVICE);

 boolean isScreenOn = powerManager.isScreenOn();

 if (isScreenOn){

 flag = true;

 s1 = getInfo();

 if(s1!=null&& s1!=""){

 if (!s1.equals(s2)){

 String appname = getAppLabel();

 s2 = s1;

 timenow = System.currentTimeMillis();

 if (time2 == 0){

 time1 = timenow;

 time2 = time1;

 Insertname = appname;

 }

 else{

 time2 = timenow-time1;

 time1 = timenow;

 int time = (int) (time2 / 1000);

 dh.Insert(Insertname, time);

 Insertname = appname;

 }

 }

 }

 }else{

 timenow = System.currentTimeMillis();

 if (flag&&Insertname!=null&&Insertname!="")

 {

 time2 = timenow-time1;

 time1 = timenow;

 int time = (int) (time2 / 1000);

 dh.Insert(Insertname, time);

Manage Your Mobile Time

18 of 29 08 October 2014

 Insertname = appname;

 }

 flag = false;

 screen = true;

 }

 handler.postDelayed(work, 1000);

 }

 };

The work flow is that:

1. To check the screen is on or off;

PowerManager powerManager = (PowerManager)getSystemService(POWER_SERVICE);

boolean isScreenOn = powerManager.isScreenOn();

2. If the screen is on, then get the current using package name;

s1 = getInfo();

3. If the current package name is changed, get the application name and record the

current time.

if (!s1.equals(s2)){

 String appname = getAppLabel();

 s2 = s1;

 timenow = System.currentTimeMillis();}

4. Do this function again one second later.

handler.postDelayed(work, 1000);

Since the method needs to run by itself and continuously, it needs to put into a service.

A Service[8] is an application component that can perform long-running operations in

the background and does not provide a user interface. Another application component

can start a service and it will continue to run in the background even if the user

switches to another application. In the service, it has several threads to manage

different functions in our application. The thread makes the functions can be run

synchronously. In app usage, it uses one thread called work() and I make it runs a

second again.

5.3.1.2 Usage chart

Since the chart needs to show to the user, it can run when our application starts and

destroyed by the application closes. So this function runs as activity. An Activity[9] is

an application component that provides a screen with which users can interact in order

to do something. Each activity is given a window in which to draw its user interface.

We use a Fragment to make up four functions. So I draw the chart in the fragment is

like that:

 public View onCreateView(LayoutInflater inflater, ViewGroup container,

 Bundle savedInstanceState) {

 v = inflater.inflate(R.layout.chart, container, false);

 return mainActivity.getChartData();

 }

The getChartData() function is in the mainActivity class. This function contains

another function which is prepared the chart’s data called openCharts().

Manage Your Mobile Time

19 of 29 08 October 2014

 public GraphicalView getChartData(){

 dh = new DatabaseHelper(this);

 GraphicalView View = openChart();

 return View;

 }

This function is easier because we found AchartEngine library, the library makes us

omit the step of drawing the chart. We can use the function provided in the library.

We fetch the data that is collected in pervious function from database and then

generate the chart. Since the function is so long because using many defined function

to make the chart clear, so I only copy the major part for the work flow.

1. I get the data from the totalTable and put into a cursor.

Cursor cr = DatabaseHelper.getInstance(MainActivity.this).fetch2();

2. Then I deal with the data to be the percentage and put in to a CategorySeries

which is provided in the library.

CategorySeries distributionSeries = new CategorySeries(" App Usage Pie Chart");

for (int i = 0; i < count; i++){

 cr.moveToNext();

 name[i] = cr.getString(1);

 time[i] = dh.getTime(name[i]);

 timetotal += time[i];

 }

 for (int i = 0; i < count; i++){

 timepercent[i] = (time[i] / timetotal) * 100.00;

 }

 for(int i=0 ;i < timepercent.length;i++){

 distributionSeries.add(name[i], timepercent[i]);

 }

3. Then generate the chart and return it.

 mChart = ChartFactory.getPieChartView(getBaseContext(), distributionSeries,

defaultRenderer);

 return(mChart);

5.3.1.3 Addition function

Then I present the minor functions. Since smart phone has many features, this causes

the power consuming very fast. You may have no idea that the battery is low when

you are focus on you work or business. The function in our application is monitoring

the power consumption. When it is lower than the setting amount, our application will

alert. The function is run is the service also.

private void batteryLevel() {

IntentFilter batteryLevelFliter = new IntentFilter(Intent.ACTION_BATTERY_CHANGED);

registerReceiver(mBatteryLevelReciver, batteryLevelFliter);

}

The intent filter is a target that monitoring the battery, and we put this filter into a

receiver to trigger the mBatteryLevelReciver when the battery level is changed. The

mBatteryLevelReciver() is below. The variable a is a value which may be entered by

user is saved in database (if the user doesn’t do any change, the default value is 30).

private BroadcastReceiver mBatteryLevelReciver = new BroadcastReceiver(){

Manage Your Mobile Time

20 of 29 08 October 2014

 @Override

 public void onReceive(Context context, Intent intent) {

 dh = new DatabaseHelper(context);

 int rawLevel = intent.getIntExtra(BatteryManager.EXTRA_LEVEL, -1);

 int scale = intent.getIntExtra(BatteryManager.EXTRA_SCALE, -1);

 int percent = -1;

 if (rawLevel >= 0 && scale > 0) {

 percent = (rawLevel * 100) / scale;

 }

 if (percent <= a){

 if (dh.getType() == 1){

 dialog(1);

 }else if (dh.getType() == 2){

 notifyBar();

 }

 a = a-5;

 }

 }

 };

Then I introduce a function that I think is useful. This function has no any setting, it is

running in back-end also. According to the survey I saw in CNN website, there are

66% of people suffer from nomophobia[10]. Nomophobia is the fear of being out of

mobile phone contact [11]. People who have nomophobia may always touch the

mobile unconsciously. This function only has a prompt dialog shows to user. To tell

the user that he or she opens the phone how many times a day.

Figure 11: Unlock Times Checking

The function is embedded in the thread work() which is the app usage function used. I

add some code to judge the user open the mobile is doing something or doing nothing.

You can see the code below has several flags. Table 1Table 4 is the flag description.

 if (isScreenOn){

 if (screen){

 //the total screen open times

 dh.update10();

 check = true;

 screen = false;

Manage Your Mobile Time

21 of 29 08 October 2014

 }

 s1 = getInfo();

 if (!s1.equals(s2)){

 check = false;

 //some code omitted

 …

 }

 }else{

 //some code omitted

 …

 if (check){

 //do nothing

 dh.update10a();

 check = false;

 }

 screen = true;

 }

Table 4: Flag Description

Flag name Description

Screen To check the screen is on or off. When it is true that

means the status is just turn on this time. So I assign

false when the update is finished.

Check To check the user’s activity when the screen is on. It is

true when the user don’t do any action that means user

turn on the screen only.

5.3.2 Difficulty

It is the first time for me to implement an android application, but overall it is not so

difficult during whole implementation. I think that is because it uses java as their

develop language. However, I still have some bottleneck in implement the app usage

function.

In this function, I have spent the most time in how to count the usage. I’ve spent

almost one month in only the counting part. I feel so awkward that is I know how to

do the counting and get the current using application, but I can’t combine them

together since the get application service will run once per second in the thread, and

this is continuously and cannot interrupt with another function, so do the counting.

Furthermore, this method makes the counting error. The result is not correct. And it

needs many resources. But I don’t have time to find out what the error is. After that

I’ve tried to make these two features in two threads, but this action makes two

features don’t have any connection.

Then I met an eldership who is expertise in develop IOS application. I tell him the

situation and he gives me a suggestion. He told me that counting has many methods,

not only addition, but also subtraction. That is the method I use now. This method

only does calculation when there are another application opens.

Manage Your Mobile Time

22 of 29 08 October 2014

CHAPTER 6. EVALUATION

6.1 Testing

We use android mobile too. So we use our mobile for testing. The app has been tested

for two weeks. When all the function is getting finished, our supervisor gives us an

advice that is to put on the application store. Our application has released on Google

play for two weeks. There are eight users have downloaded our application, and we

keep to update it about once or twice a week according to the users' error report. So

our application has been tested for one month. We hope our application can not only

be used for many different mobile, but also will widely be used.

For the testing, we don’t have any test plan because every device is different. My

partner and me both use Samsung mobile. My friend use android mobile also but the

mobile is Sony’s product. The application released after we has tested already. It is no

problem on our mobile but my friend’s mobile cannot open our application. It is

difficult to judge the successful rate.

I think release the application on Google play is good. If we only use two mobiles for

testing, we only do a specification change. I realize when the application has released

on Google play. It is a platform for developers provide the application to user to

download and test. Because user can report me the error, and I can see the error report

on the Google play developer console.

6.2 Comparison

We have downloaded two similar applications in the project beginning, I do some

comparisons between them and our application. these two applications are called App

Time Mini 2[12] and AppUsage[13].

First is the size of storage. Our application is very small, only is about 2 MB(see

Figure 12). Other two applications’ size is 4.75 MB and 7.24 MB(see Figure 13). The

Figures is captured from my mobile.

Figure 12: MobileTime’s size

Manage Your Mobile Time

23 of 29 08 October 2014

Figure 13: The size of App Timer Mini 2 and AppUsage

Next is the consumption. Our application has modified many time. And the

consumption has change in every modification. The consumption data is captured

from the system manager in my mobile. There are four pictures. Each picture was

captured in different day. In 26
th

 April, we found the consumption is large, and then

we did an adjustment. You can see the consumption became lower in 19
th

 May. Until

5
th

 June, the consumption was still bigger, it had 11% of whole consumption. This is

much more than two other applications.

Figure 14: consumption picture captured in 26
th

 April

Manage Your Mobile Time

24 of 29 08 October 2014

Figure 15: consumption picture captured in 19
th

 May

Figure 16: consumption picture captured in 30
th

 May

Manage Your Mobile Time

25 of 29 08 October 2014

Figure 17: consumption picture captured in 5
th

 June

After that is the feature comparison. They also have the counting usage feature. But

the app timer mini 2, it needs users to choose which application to counting. I think

that is loss the purpose of counting because users have a choice. They don’t know the

real situation of using mobile.

Manage Your Mobile Time

26 of 29 08 October 2014

Figure 18: App Timer Mini 2 page

Furthermore, App Timer Mini 2 also has a reminder. But it only supports 10 alerts in

free version. Our application is free in every feature. Users can add more than 10

records in our application’s reminder.

Figure 19: App Timer Mini 2 Alert page

Manage Your Mobile Time

27 of 29 08 October 2014

The other application only has counting feature. No any additional feature.

Figure 20: AppUsage screenshot

Manage Your Mobile Time

28 of 29 08 October 2014

CHAPTER 7. SUMMARY

7.1 Future work

We still have many ideas to implement in our application. Since we are still a novice

and we need time to study android system. If we have more time, I will implement the

application in more detail.

To classify the applications is really want to achieve. In the Google play, the

categories are chaos. An application may be appeared in one or two categories. This is

very confused if there are a hundred applications in the mobile and our application

needs to show a hundred records. This may lead to app non responsible. If I can

divide the application in different category, it will reduce the memory usage and also

the chart can see clearly. The picture is captured in my mobile. The chart is generated

with 17 records. It is hard to see the small pieces. If the chart can show in categories is

much clear.

Figure 21: Usage Chart screenshot

Second, we want to show more detail in app usage. For example, to show the user use

Facebook for chatting, or watching friend’s status. But we still not find the permission

for this.

 Finally, I want to improve the consumption to be much lower, as I mention in the

comparison.

Manage Your Mobile Time

29 of 29 08 October 2014

7.2 Conclusion

In this project, I’ve learnt so much. I know that there is no such perfect application or

software in the world unless the developer keeps update. Each application needs

maintenance, there must be some bugs that the developer do not know. A perfect

application needs to be testing a thousand times or more to be complete.

We’ve successful to implement the application but there is still some inadequate. If

we have more time to check out the method, we can finish the future work above.

Then the application will be perfect.

Last but not least, I want to thank my partner doing this project with me. We usually

discuss for a long time. We studied how to implement an android application together.

Also, thanks my supervisor, Dr. Sofia Zhuang, she gives us many suggestions to help

us to think more in detail and improve the application’s feature.

Manage Your Mobile Time

30 of 29 08 October 2014

CHAPTER 8. REFERENCES

[1] Eclipse, “Eclipse - The Eclipse foundation open source community website”, [Online], Avaliable:
https://www.eclipse.org/

[2]Android, “Android SDK | Android Developers”, [Online], Avaliable:
http://developer.android.com/sdk/index.html

[3]Oracle, “Java SE | Oracle Technology Network | Oracle”, [Online], Avalicable:
http://www.oracle.com/technetwork/java/javase/overview/index.html

[4]Android, “ADT Plugin | Android Developers”, [Online], Avaliable:
http://developer.android.com/tools/sdk/eclipse-adt.html

[5]AChartEngine, “achatenine.org – News”, [Online], Avaliable: http://www.achartengine.org/index.html

[6]Genymotion, “Genymotion”, [Online], Avaliable: http://www.genymotion.com/

[7]SQLite, “SQLite Home Page”, [Online], Avaliable: http://www.sqlite.org/

[8]Android, “Services | Android Developers”, [Online], Avaliable:
http://developer.android.com/guide/components/services.html

[9]Android, “Activities | Android Developers”, [Online], Avaliable:
http://developer.android.com/guide/components/activities.html

[10]CNN, “Rise of ‘nomophobia’: More people fear loss of mobile contact”, [Online], Avaliable:
http://edition.cnn.com/2012/03/06/tech/mobile/nomophobia-mobile-addiction/

[11]SecurEnvoy, “66% of the population suffer from Nomophobia the fear of being without their phone”,
[Online], Avaliable: https://www.securenvoy.com/blog/2012/02/16/66-of-the-population-suffer-from-
nomophobia-the-fear-of-being-without-their-phone/

[12]KF Software House, “App Timer Mini 2 – Android App on Google Play”, [Online]. Avaliable:
https://play.google.com/store/apps/details?id=info.kfsoft.android.AppTimer2

[13]Smartapers.com, “AppUsage – Android App on Google Play”, [Online], Avaliable:
https://play.google.com/store/apps/details?id=com.smartappers.appusage

[14] Ho Sin Nga, my partner

https://www.eclipse.org/
http://developer.android.com/sdk/index.html
http://www.oracle.com/technetwork/java/javase/overview/index.html
http://developer.android.com/tools/sdk/eclipse-adt.html
http://www.achartengine.org/index.html
http://www.genymotion.com/
http://www.sqlite.org/
http://developer.android.com/guide/components/services.html
http://developer.android.com/guide/components/activities.html
http://edition.cnn.com/2012/03/06/tech/mobile/nomophobia-mobile-addiction/
https://www.securenvoy.com/blog/2012/02/16/66-of-the-population-suffer-from-nomophobia-the-fear-of-being-without-their-phone/
https://www.securenvoy.com/blog/2012/02/16/66-of-the-population-suffer-from-nomophobia-the-fear-of-being-without-their-phone/
https://play.google.com/store/apps/details?id=info.kfsoft.android.AppTimer2
https://play.google.com/store/apps/details?id=com.smartappers.appusage

