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Abstract 

Previous research had devoted a lot to the practice of exploratory and confirmatory factor 

analysis. Despite the large volume of reviews and simulations, little had been devoted to the 

decision of selecting and discarding items in scale development. The present research examined 

the impact of sample size, number of items, number of factors, ratio of strong indicators to weak 

indicators (i.e. items having strong / weak associations with the latent construct), and magnitude 

of weak loadings on the rates of occurrence of selection errors. A Monte Carlo simulation with a 

6 × 3 × 2 × 3 × 3 design was conducted, and the real life practice of factor analysis in scale was 

examined. Results showed that when sample size was not large, the selection errors were not 

negligible, and selection errors also lead to reductions in population reliability. The utility of fit-

indexes in identifying selection errors was also examined, with the model χ
2
 being relatively 

more informative. It was also found that a large sample confirmatory factor analysis did not 

compensate for the instability of a small sample exploratory factor analysis. Some suggestions 

regarding sample size and procedures in scale development were discussed, with a general urge 

for more conservative procedure and careful sample size planning.  
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Selection Errors in Scale Development: A Monte Carlo Study of Factor Analysis 

From the time when Spearman (1904; 1920) developed it, factor analysis became an 

essential technique for scientific psychology. Though Spearman himself particularly used the 

technique to support his theory of intelligence, now factor analysis had been applied more 

broadly to the analysis of other constructs, and to the formulation of psychological scales (e.g. 

optimism by Scheier, Carver, & Bridges, 1994; depression by Radloff, 1977). As Nunnally and 

Bernstein (1994) and many others claimed, measurement scales are the fundamentals of 

psychology, since they allow psychological constructs like intelligence and personality to be 

studied in a scientific way. Most of the discussions on the process of scale development 

identified factor analysis as an important step (e.g. DeVellis, 2003; Fabrigar, Wegener, 

MacCallum, & Strahan, 1999), which confirmed its importance. With a hundred years of 

development, the technique became more refined and improved in accuracy (Cudeck & 

MacCallum, 2007, Chapter 2). However, in the literature there was relatively little discussion on 

the item selection decision. With the terminology of signal detection theory (Tanner and Swets, 

1954), there are two kinds of errors in selecting items: false alarm (falsely including an item with 

weak relations
1
 with the underlying factors) and miss (falsely excluding an item with strong 

relations with the underlying factors). The present study examined the stability of both 

exploratory factor analysis (EFA) and confirmatory factor analysis (CFA) regarding these 

selection errors within the framework of scale development. 

Steps for Scale Development 

I would first establish a general framework for the scale development process. Different 

sources (e.g. DeVellis, 2003; Worthington & Whittaker, 2006) presented slightly different 

conceptual models, but most of them would include the following steps: 
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1. Item generation. An item pool is generated, usually by means of some literature 

reviews, experts' opinions, or in-depth interviews. 

2. Item screening. Items are subjected to a preliminary test to identify and eliminate 

items that are ambiguous or obscure in meaning, and those that overlap with other items. 

3. Item Selection. The pool of items, after revision for wordings, is administered to a 

sample of participants. Usually factor analysis is used to analyze the scale and select items.  

4. Replication. The retained items after the previous stage are usually administered to 

another sample. Their responses then are often analyzed to determine whether the scale still 

performs as intended in this second sample. Item selection or deletion occasionally takes place at 

this stage (e.g. Noone, Stephens, & Alpass, 2010).  

5. Testing for validity and other properties. Sometimes the scale is further tested in 

other samples for determining its predictive or discriminative power using certain criterion 

constructs or for its normative data in certain populations (see DeVellis, 2003, Chapter 4; 

Nunnally & Bernstein, 1994, Chapter 3, for detailed discussions). 

6. Scale revision and short form. In later studies, when evidence shows that the scale is 

suboptimal, some items in the scale are replaced. Occasionally some long scales are reduced in 

number of items (e.g. mini-IPIP by Donnellan, Oswald, & Baird, 2006) for research purposes. 

While the conceptual importance of the items will be of major concern in selecting items to the 

short form, factor analysis still acts as an important tool for the decision. 

For the objectives of the present study, I exclusively deal with Step 3 and Step 4 (and the 

topics related to selection could also be generalized to Step 6 for selecting items for short form).  

Impacts of False Alarms, Misses, and Misspecifications on the Selection Process 

When weak indicators
2
, items having only weak associations with all the factors of the 
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construct, are retained after the selection, the error of false alarm is committed. When strong 

indicators, items having strong associations with at least one factor of the scale, are excluded, it 

is a miss. This study included a third type of error: When strong indicators are selected correctly 

but misattributed to be an indicator of another factor, the error of misspecification is committed
3
. 

For parsimonious concerns, often researchers would try to limit the length of their scales by 

selecting only a certain number of strong indicators on each factor (DeVellis, 2003). If a weak 

indicator replaced a strong indicator during the selection, the reliability and validity of the scale 

in the population may be attenuated, especially when the number of selected items is small and 

the difference between strong indicators and weak indicators is large (see Appendix B). In 

addition, as later section discussed, the problem of misspecification is probably more severe 

because it represented an incorrect structure of the construct captured by the scale.   

Review on Factor Analyses 

Factor analysis is a statistical technique to describe the variability of a set of variables 

with fewer latent variables, or factors (Kerlinger & Lee, 2000). To illustrate, consider the 

example of the well-known Center for Epidemiologic Studies Depression Scale (CES-D Scale; 

Radloff, 1977). The scores given by a sample of participants on 20 depression-related items were 

factor-analyzed and grouped into four factors, namely depressed affect, positive affect, somatic 

and retarded activity, and interpersonal. Each item had varying degrees of associations with the 

factors. For example in the original sample for developing the CES-D, the item “Happy” had 

about 44% (corresponded to the squared value of the standardized regression coefficient) of its 

variance explained by the factor positive affect. Thus, factor analysis allows researchers to 

represent a collection of items with a more parsimonious set of latent variables which are more 

easily handled (Fabrigar et al., 1999; for more understanding of factor analysis, refer to 
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Thompson, 2004). The latent variables also aid understanding of the construct being studied.  

EFA 

Researchers generally distinguished two types of factor analyses: exploratory and 

confirmatory. As the name suggested, EFA aims to explore the factor structure, including the 

number of factors to be extracted and the grouping of the items, of a set of items without the 

need for an a priori theory, as in the case of developing the CES-D (Radloff, 1977)
4
. Previous 

research focused a lot on factor extraction methods, ways to determine number of factors, and 

procedures of estimating the regression weights on an item when using the latent factors as the 

predictors. The latter one is denoted as factor loading (or simply loading) in the present study 

(also called pattern coefficients, see Henson & Roberts, 2006; Thompson, 2004). 

The minimum sample size for EFA to be stable was also the focus of previous research. 

Whereas earlier scholars suggested a minimum of 150 for large number of indicators and 300 for 

small number of indicators (Guadagnoli & Velicer, 1988) or a participant-indicator ratio of 10 to 

1 (Nunnally, 1978), recently researchers seemed to agree that sample size requirement could not 

be determined without concerns of other factors (Hogarty, Hines, Kromrey, Ferron, & Mumford, 

2005). For instance, MacCallum, Widaman, Zhang, and Hong (1999) suggested that strong 

loadings and large communality coefficients (i.e. the proportion of an item's variances accounted 

for by all the factors extracted) could make the solution more stable. In other words, under these 

conditions, a smaller sample could be adequate (de Winter, Dodou, & Wieringa, 2009). 

Despite the huge volume of research on the best practice of EFA (e.g. Conway & 

Huffcutt, 2003; Ford, MacCallum, & Tait, 1986; Gorsuch, 1997; Hurley et al., 1997; Kahn, 2006; 

Worthington & Whittaker, 2006), the item selection process was relatively understudied. In the 

context of scale development, a researcher generally devises a large pool of items, collects 
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responses in a sample, and uses EFA to determine the factor structure and the items to be 

included in the scale. Some items in the pool have strong estimated loadings, while others have 

weak ones. The latters are usually removed so that researchers can get a more parsimonious scale 

based on the magnitude and pattern of factor loadings. Typically research used what Hogarty, 

Kromrey, Ferron, and Hines (2004) called the “traditional approach”, in which a pre-determined 

cutoff value is set, and items with loadings on all factors lower than the cutoff are discarded (see 

also Osborne et al., 2008). However, there are some limitations in this approach.  

Hogarty et al. (2004) pointed out that the cutoff value was usually arbitrarily set. A brief 

survey conducted by the author on 23 recent articles where a new scale was developed indicated 

that some researchers used a cutoff value of .3, some .5, and some used as high as .75 (see 

Appendix B). This result was consistent with the report from Osborne et al. (2008). Yet, seldom 

did researchers justify the chosen values or refer to established guidelines (as reported by Henson 

& Roberts, 2006, the median cutoff used was .4 for psychological journals). Even if they did 

provide some references, the reason for choosing that specific guideline was lacking. For 

example, Nunnally (1978) suggested .3 (which he assumed to be generally sufficient for a 

loading to be significantly different from zero), while Tabachnick and Fidell (2007) and 

Worthington and Whittaker (2006) suggested .32 (which means that 10% of the variances is 

explained by the factor). Due to this inconsistency, the same pool of items might give very 

different set of selected items using different cutoff values.  

Also, as the estimation of the loadings is prone to sampling errors when sample size is 

not large enough (Sass, 2010), the item selection process may contain false alarm or miss. 

Hogarty et al. (2005)'s and Hogarty et al. (2004)'s research suggested that the latter was more 

common than the former. In their Monte Carlo studies, Hogarty et al. (2005) and Hogarty et al. 
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(2004) concluded that this approach performed well in selecting the strong indicators. Though I 

agreed with their conclusion, its generalizability might be limited. In Hogarty et al. (2004), the 

ratio of weak indicators to strong indicators ranged from 0.02 to 0.33; however, my review on 

recent articles suggested that the proportion of weak indicators in the pool of items may be 

larger. For instance, in Labbe and Maisto (2010), the number of items that did not reach the 

cutoff in EFA was half of the number of final selection (a ratio of 0.53, with 9 discarded and 17 

selected); whereas in Wright, Creed, and Zimmer-Gembeck (2010), 32 items did not meet the 

cutoff and only 17 were selected (a ratio of 1.88). This suggested the plausibility of a higher 

proportion of weak indicators in real life than those tested in Hogarty et al.'s study.  

Lastly, the result in Hogarty et al. (2004) also did not take into account the existence of 

cross-loadings, that is, an item’s loadings on factors other than the one with which the item has 

strongest associations. Usually researchers also set a cutoff for cross-loadings so that items that 

do not clearly belong to one factor are discarded (see Appendix B; Osborne et al., 2008). 

The present study extended the study of Hogarty et al. (2004) to a context closer to the 

real practice in scale development. I examined the rates of occurrence of false alarms, misses, 

and misspecifications through simulations, under conditions of different sample sizes to evaluate 

the sample size requirement.   

CFA 

Recognizing the limitations of EFA, many researchers now used CFA to examine whether 

the factor structure suggested by EFA could be replicated in another sample. While CFA could 

refer to different techniques in the literature, in the present study it referred to the common 

practice of defining a simple structure of a scale (i.e., assuming every items loaded on only one 

factor; see McDonald, 1985) and used structural equation modeling (SEM) to estimate the 
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loadings and assess whether the defined structure is acceptable in light of the data. 

Methodological issues associated with CFA shared those with SEM, like the performance of 

different families of fit-indexes and post hoc modification of the pre-defined structure (Sörbom, 

1989). In addition, the effect of sample size on different indices had also been studied (Anderson 

& Gerbing, 1984; Gerbing & Anderson, 1985; Jackson, 2001; MacCallum, Widaman, Preacher, 

& Hong, 2001). For example, Fan, Thompson, and Wang (1999) found that the proportion of 

variances of different SEM fit-indexes by sample size ranged from less than 1% to 10%.  

While there were a large volume of studies on the performance of SEM models in 

general, the individual items received less attention. Yet in the stage of scale development, both 

are essential, particularly when one recognizes the possibility of false alarms in CFA. Kahn 

(2006) shared the same opinion that one objective of CFA should be to test hypotheses that the 

item loadings were non-zero, yet in practice not very often did researcher report the significance 

level for individual loadings (see Labbe & Maisto, 2010; Wright et al., 2010; for examples where 

significance level were not reported). Because CFA estimation is also subject to sampling error, 

test for loadings may be able to detect items with zero loadings. Unfortunately, the goal of scale 

development usually is not restricted to finding items that have non-zero relations with the 

factors; rather, researchers want a parsimonious set of strong indicators. Thus, the logic of 

hypothesis testing may not be sufficient to fulfill this purpose, that is, to exclude those weak 

indicators with small non-zero loadings.  

Whereas ways to detect false alarm needs further exploration, similarly in some situations 

miss also deserves attentions. Consider a case when the researcher, after carefully taking into 

account different concerns, decided that the final sets of items should contain two factors and in 

each factor exactly seven items. After the scale had been developed, the researcher identified a 
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weak indicator in the scale which, for psychometric reasons, should be replaced by one with a 

stronger loading. In such occasions researchers usually would devise a new item to fill the gap 

(e.g. Scheier et al., 1994 in the revision of the Life Orientation Test). However, he or she could 

also choose to be more conservative before discarding items to save the cost in later replacement. 

In this sense the investigation on the occurrences of miss is relevant.  

Compared to false alarms and misses, it may be easier to identify misspecifications. In 

the case of false alarm, if an item has a small but non-zero loadings with the factor, it still 

represents a true model structure; while for miss, as the item has been completely removed, 

researchers has no hint for this omission as it is not present in the covariance matrix (which is 

different from constraining it to zero). On the other hand, when an item loads on a wrong factor, 

the implied model puts constrain to the path between the item and the correct factor to zero, 

resulting in a model with poor fit. Thus, the use fit indexes should be able to identify item 

misspecification.  

Besides studying the performances of different fit-indexes, this study also addresses the 

practical problem of sample size allocation between EFA and CFA. As it was usually more 

favorable to use two independent samples for EFA and CFA (to compensate for sampling errors), 

with the constraint of resources researchers would like to know whether they should have a 

larger sample for EFA, for CFA, or have the two samples equal in size. While Cheung (2009) 

discussed that the exploratory sample should not be too small, similarly there were certain 

sample size requirement for CFA to be stable. Thus I also compare the quality of item selections 

between different combinations of sample sizes.  

In summary, the purpose of the present study is to evaluate the traditional approach of 

scale development in using EFA and CFA. Through simulations, I addressed particular questions 
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including (a) the prevalence of selection errors in EFA; (b) whether the minimum sample size 

suggested by other scholars (e.g. MacCallum et al., 1999; Nunnally, 1978) is enough for an 

acceptable level of false alarms and misses; and (c) whether the CFA fit-indexes and testing of 

loadings could identify the selection errors in the EFA solution.   

Method 

A Monte Carlo study was conducted to test the performance of EFA and CFA across 

manipulated levels of five variables: (a) sample size, (b) number of factors, (c) number of strong 

indicators per factor, (d) proportion of weak indicators, and (e) magnitude of loadings for weak 

indicators. The statistical program R with version 2.12.2 (R Development Core Team, 2010) was 

used for all data analyses throughout the study.  

Design  

The simulation began by defining a population correlation matrix between all items using 

the psych package for R (Revelle, 2010). This correlation matrix was created by specifying the 

loadings of all items, both for strong indicators and weak indicators, on their primary factors 

(i.e., the factor to which they belong) and the interfactor correlations. Simulated sample 

correlation matrices were generated under the assumption of normality.  

EFA Selection. The simulated sample correlation matrixes were then factor analyzed 

with principal axis factoring and promax rotation. Principal axis factoring and promax rotation 

were generally better than or at least as good as other alternatives (Fabrigar et al., 1999). The true 

number of factors to be extracted was specified, which could eliminate the bias of extracting an 

incorrect number of factors on the EFA solution (see Fava & Velicer, 1992; Fava & Velicer, 

1996) so that the relation between sampling error and the selection error rates could be more 

clearly demonstrated. For each sample, then, following the suggestions by Worthington and 
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Whittaker (2006), items having estimated loadings lower than .32 on all factors were deleted. 

Besides, items were deleted if the difference between the absolute values of its strongest 

estimated loadings and its second strongest estimated loadings was smaller than .15. These 

selection criteria were chosen because they took into account cross-loadings, which was quite a 

common practice in the field (Appendix B). After the deletion, sample EFA solutions were 

compared with the population condition to determine the prevalence of selection errors.  

CFA Model Fit. Next, same number of samples of raw data (rather than correlation 

matrices) as in the EFA stage were generated to simulate the replications in CFA, and each was 

matched with one EFA sample. For each pair, CFA was performed on the second sample to test 

the simple factor structure (with all cross-loadings and error covariances fixed to zero) implied 

by the EFA sample with the maximum iteration equals to 999. The maximum likelihood 

estimation in the sem package (Fox, 2010) of R uses the two-stage least squares procedure for 

fitting the model with an inputted covariance matrix, which provides similar results as in 

LISREL (Jöreskog, & Sörbom, 1996). The fit-indexes examined for the present study included 

the Goodness-of-Fit Index (GFI), Adjusted Goodness-of-Fit Index (Jöreskog & Sörbom, 1996), 

the root mean square error of approximation (RMSEA; Steiger, 1990), the Bentler-Bonett's 

(1980) Normed Fit Index (NFI), the Nonnormed Fit Index (NNFI; Bentler & Bonett, 1980; 

Tucker & Lewis, 1973), the Comparative Fit Index (Bentler, 1990), the standardized root mean 

squared residual (SRMR; Bentler, 1995), and the model χ
2
.  

CFA Selection. Another round of selection was performed based on the estimated 

loadings in the CFA solution. There are two common practices regarding CFA selection, which 

include assessing modification indexes (Sörbom, 1989) and examining the significance levels of 

the loadings. The first one had been challenged by MacCallum, Roznowski, and Necowitz 
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(1992) for directing to misleading decisions, while for the second its ineffectiveness in 

identifying weak indicators were dubious (see previous discussion of this report). As the goal 

was to include only the strong indicators, in this study the CFA selection retained items with the 

squared value of the unstandardized loading larger than 10% (.32
2
) of the estimated item 

variance at a statistical significance level of .05, and discarded the otherwise
5
.  

Manipulated and Constant Parameters and the Symbols Used 

Sample size for EFA (NE). As a major concern of the present study, NE was manipulated 

at four levels (100, 200, 400, 800). These levels were higher than those used by MacCallum et al. 

(1999) and were consistent with Jackson (2001). The level of 50 was not used here because many 

studies suggested that it was not enough for larger number of factors where average loadings 

were not high (de Winter et al., 2009).  

Sample size for CFA (NC). Levels of NC were identical to those of NE. However, for ease 

of communication, I only examine the four conditions with NC equal NE, plus the conditions with 

a large EFA sample (NE = 800) with a small CFA sample (NC = 100), and also a small EFA 

sample (NE = 100) with a large CFA sample (NC = 800). The conditions with equal sizes of EFA 

and CFA samples were typical in research practice (Appendix B). The two unbalanced conditions 

examined whether a large NC could compensate for a small NE, or vice versa, and the results 

could be useful for researchers when planning the sample sizes for scale development.  

Number of factors (f). As indicated by different research (de Winter et al. 2009; 

MacCallum et al. 1999; Mundfrom, Shaw, & Ke, 2005), f could influence the stability of the EFA 

solution. Particularly, higher f corresponded to lower stability, which implies that the selection in 

EFA would be worse when the number of factors increases. Henson and Roberts (2006) reported 

that the number of factors extracted in psychological research ranged from 1 to 7, with a median 
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of 3. Thus, in the present study two levels of f were employed (3, 5, and 7). 

Number of items per factor (p/f), number of strong indicators per factor (pS/f), and 

ratio of weak indicators to strong indicators (pW/pS). Past research had shown that p/f had 

impact on both EFA and CFA. For example, Mundfrom et al. (2005) showed that the stability of 

EFA increased when p increased, and its influence is stronger than absolute sample size or 

communality level. For CFA, research also suggested that increase in p could stabilize the 

sample estimation (Marsh, Hau, Balla, and Grayson 1998; Jackson, 2001; Velicer & Fava, 1998). 

In the present study, there were different combinations of pS and pW in the simulation. 

Specifically, pS/f had two levels: 3 and 6, each with three corresponding levels of the ratio pW/pS: 

0, or no weak indicators; 1, and 2. Thus there were in total six combinations of strong and weak 

indicators in the population. The choice for pW/pS was believed to be typical for applied research 

(Appendix B). Combining pS and pW, p/f ranged from 3 (3 strong indicators per factor with no 

weak indicators) to 18 (6 strong indicators per factor with 12 weak indicators), which was similar 

to previous research (Hogarty et al., 2005; MacCallum et al., 1999; both used 10/3 as the 

minimum), and also covered the maximum of 16 in the review by Henson and Roberts (2006) of 

psychological research using factor analyses. 

Magnitude of loadings for strong indicators (λS) and weak indicators (λW). Unlike 

previous studies (e.g. Mundfrom et al., 2005), strong indicators in the present study did not 

assume a homogeneous value of loadings, but descended from .8 to .5 proportionally. For 

example, in conditions with six strong indicators, strong indicators had loadings 

of .80, .74, .68, .62, .56, and .50 respectively. This corresponded to the moderate to high range in 

other simulation studies (Hogarty et al., 2004; MacCallum et al., 1999). For λW, similar to 

Hogarty et al.'s (2004) criteria, three levels were used (.1, .2, and .3) to assess the effect of 
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different degrees of weak indicators to the solution.  

Table 1 shows a summary for the manipulated parameters. In brief, the Monte Carlo 

study used a 6 (NE and NC) × 3 (f) × 2 (pS/f) × 3 (pW/pS) × 3 (λW) design. However, the extreme 

conditions with the number of items larger than NE were not simulated. These included six 

conditions with f = 7, pS/f = 6, pW/pS = 2, and NE = 100. In addition, for conditions with no weak 

indicators, there were no variations in weak loadings. Thus, the actual number of conditions in 

the present study was 246. In all conditions, inter-correlations between factors were fixed to .3, 

which was a typical value shown by Sass (2010) to produce a relatively accurate EFA solution 

for promax rotation. The number of replications in each condition was 500.  

Data Analyses After EFA 

 Descriptive analyses of EFA selection errors. Four indicators of the simulated data were 

computed: (a) false alarm rate-the percentage of replications in which at least one weak indicator 

is falsely included; (b) miss rate-the percentage of replications in which at least one strong 

indicator is falsely excluded; and (c) misspecification rate-the percentage of replications in 

which at least one strong indicator have its highest estimated loadings loaded on a factor 

different from the one that the indicator was supposed to load in the population. Central tendency 

of selection errors would be reported with regard to different manipulated variables. 

Selection implied population reliability coefficients. To deduce the impact of selection 

errors, the population reliability for each factor was first computed both for the selected items in 

EFA and those after CFA, using the population interitem correlations by the formula α =

𝑘ρ̅

1+(𝑘−1)ρ̅
 , where k (k ≥ 2) equals to the number of items selected and ρ̅ the average value of the 

inter-correlations between the selected items. For cases where k = 1, the population reliability 

was calculated by the squared value of the factor loading
b
. This obtained reliability coefficients 
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were then compared with the baseline value computed the correlation between only all strong 

indicators (α = .680 for pS/f = 3; .813 for pS/f = 6). This deviation from the baseline (denoted 

asΔρ0) were then analyzed by omnibus analysis of variances (ANOVA) to examine the effect of 

different manipulated variables and all possible two- or multi-way interaction between them, 

with the effect size measure of omega-squared (ω
2
)
6
.  

Data Analyses After CFA 

Utility of fit-indexes in identifying selection errors. The utility of CFA was investigated 

to see whether the model-fit could provide information for the prior EFA decision. Particularly, 

the eight fit-indexes reported in R were discussed. Following the traditional rule of thumb (Hu & 

Bentler, 1999), the cutoff for GFI, AGFI, NFI, NNFI, and CFI was .90, that is, values above .90 

was regarded as good fit. For RMSEA, a value below .05 indicated a good fit; while for SRMR 

the value was .08 (see Hu & Bentler, 1998). For model χ2
 a significance level higher than .05 

would be considered good. Comparing the results of EFA selection errors and CFA fit-indexes, 

two ratios were calculated. 

Selection Error Sensitivity. The number of replications in which the EFA selection 

contained that error and the fit-indexes in CFA did not meet the conventional cutoff, divided by 

the total number of replications in which the EFA selection contained that error.  

Overall Specificity. The number of replications in which the EFA selection did not 

contain any selection error and the fit-indexes in CFA met the conventional cutoff, divided by the 

total number of replications in which the EFA selection did not contain that error. 

Comparisons of different sample size allocations. Lastly, I examined the change in 

false alarms, misses, and misspecifications after the CFA selection and tried to identify the effect 

of the manipulated variables. The deviation of the reliability coefficients from the baseline (only 
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all strong indicators selected) after CFA, denoted as Δρ1, was compared with the one before 

CFA, denoted as Δρ0. Four planned contrasts were carried out with Wilcoxon paired sample 

test
7
 to determine whether different distribution of EFA sample and CFA sample would make a 

difference in reliability. The four contrasts were: 

1. Δρ1 (NE = 100 & NC = 800, small-head) versus Δρ1 (NE = 800 & NC = 100, big-

head); 

2. Δρ1 (NE = NC = 100, small sample half-head) versus Δρ0 (NE = 200, small sample 

all-head); 

3. Δρ1 (NE = NC = 200, moderate sample half-head) versus Δρ0 (NE = 400, moderate 

sample all-head); 

4. Δρ1 (NE = NC = 400, large sample half-head) versus Δρ0 (NE = 800, large sample 

all-head).  

Result 

Selection Error in EFA 

Three kinds of errors are identified in selecting and discarding items: false alarms, 

misses, and misspecifications. The error rates were reported in Table 2. As the results had a 

skewed distribution, the median were reported instead of the mean. Generally speaking, the most 

common error was the false alarms, followed by the misses, and misspecifications were found 

the least. Regardless of other factor, when λW is .3, which is very close to the cutoff applied in 

this study, most replications contains at least one false alarm in the selection (with a median 

value of 100). The median false alarm rate of conditions with a small sample (NE = 100) 

regardless of other manipulated variables is higher than 95%. False alarm rate also increases with 

the increase of pW/pS ratio, f, and decreases with more strong indicators (pS/f). Only when sample 
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size is very large (NE = 800) and when λW is not close to the cutoff would the false alarm rate 

generally be kept below 15%. The ratio of number of false alarms to the number of weak 

indicators follows a similar pattern as the false alarm rate.  

The second selection error, miss, seems to occur less. Like false alarm, the miss rate rises 

up when f or pW/pS increases, and falls down when NE, pS/f or λW increases. When the sample 

size reaches 400, the miss rate seems no longer cause problems, with all median values lower 

than 2%. Lastly, replications with misspecification account for a significant proportion when the 

sample size is 100, particularly when the number of factors and the pW/pS ratio is high, and when 

λW and pS/f are small. When NE reaches 200, misspecification generally is small (< 2%).  

Because in different conditions with the same sample size the total number of indicators 

in the item pool varies, it is important to take the participant-indicator ratio (before EFA took 

place) into account. The conditions are broken down into five groups similar to the one by 

Osborne et al. (2008): smaller than 3:1 (24.0%), between 3:1 to 5:1 (16.7%), between 5:1 to 10:1 

(22.4%), between 10:1 to 20:1 (20.3%), and larger than 20:1 (16.67%). The percentage of 

conditions with the ratio higher than 10:1 in the present study is about the same as the one 

reported by Osborne et al. in 303 articles in PsycINFO (36.8%). As shown in Figure 1, even 

when the ratio is between 5:1 to 10:1, the median false alarm rate is still .6. For miss rate, when 

the ratio is at least 5:1 the median is less than 20%. For misspecification, most of the conditions 

would have a rate below 40% except for some conditions when the ratio reaches 3:1.  

Reliability as Outcome in EFA 

 Deviation of reliability coefficient from the baseline (Δρ0) was used to further investigate 

the impact of these selection errors. As across conditions the number of strong indicators 

differed, Δρ0 was calculated by subtracting the baseline coefficient (.680 for pS/f = 3, and .813 
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for pS/f = 6) from the selection-implied one. As shown in Figure 2a, when both the sample size 

and the number of strong indicators are small, there is on average a .15 reduction (with a median 

Δρ0 of .11) in population reliability. With more strong indicators in the model, the reliability 

coefficient is more resistant to the negative effect of small sample size. 

 An omnibus ANOVA was performed to analyze the impact of the manipulated variables 

on the model reliability, with Δρ0 being the dependent variable. Because the sample size is 

unexceptionally high (N = 126,000), I concerned more with the ω
2
 (see Table 3). NE and the 

pW/pS ratio stood out to have the biggest main effects (ω
2
 = .23 and .09 respectively), indicating 

that reliability decreases less with a larger sample size or less weak indicators in the item pool 

relative to the strong indicators. Sample size also interacts with pS/f,  pW/pS ratio, and λW to 

influence Δρ0 (ω
2
 for interaction effect = .77, .57, .57 respectively). As shown in Figure 2a, when 

pS/f is high, the negative effect of small NE decreases. In Figure 2b, again, with higher pW/pS 

ratio, it aggravates the negative effect of small NE. Particularly, reliability coefficients are quite 

stable with no weak indicators in the sample pool, but not very stable in conditions with pW/pS 

ratio = 2, even when NE = 400. Lastly, in Figure 2c, the negative effect of small NE increases 

from λW equals .1 to λW equals .2. However, as λW becomes larger (to .3), the inter-item 

correlations increases and results in a smaller deviation of reliability from the ideal one. 

Sensitivity and Specificity of Fit-Indexes to Selection Errors 

  Before studying the data from CFA, in some replications the CFA solution is not 

computable either because the solution did not converge, the covariance matrix was singular, or 

because the implied model after EFA selection was underidentified (e.g. when only one indicator 

was left for a factor). There are a total of 21 conditions with more than 10% of the replications 

not computable, and 20 are from conditions with NE = 100. Particularly, in condition with f = 7, 
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pS/f = 3, pw/ps = 2 and λW = .1, only 104 replications are complete. Analyses for the associations 

between different selection errors and CFA non-computability are shown in Appendix C. For 

subsequent analyses, only replications with the CFA solution available in R were used. 

The major analyses for the selection error sensitivity and overall specificity of different 

fit-indexes are shown in Figure 3. In brief, the sensitivity of NFI was high (Ms = 67%, 59%, and 

62% respectively for false alarm, miss, and misspecification), but at the same time the overall 

specificity was among the lowest (M = 55%). Besides NFI, other fit-indexes produce a low 

sensitivity (for false alarm, 8% to 45%; for miss, 11% to 42%; for misspecification, 19% to 55%) 

and a relatively high mean specificity (from 65% for AGFI to 97% for SRMR) for all three 

errors. The significance level of the model χ
2
 is the only one that with mean sensitivity higher 

than 30% on all errors (Ms = 34%, 39%, and 55%) and overall specificity higher than 80%.  

Selection Errors and Population Reliability of the Items after CFA 

Table 4 shows the change in number of false alarms, misses, and misspecifications after 

running CFA and performing another item selection. As the mean value and the median value 

does not differ much (not more than .5), the mean values are reported. Generally, after the CFA 

selection, the number of false alarms decreases to a significant extent, while the number of 

misspecification also slightly decreases. Particularly, the large number of false alarms left by the 

EFA selection with large f, pW/pS, or λW is remedied. Nevertheless, the trade-off is the inflated 

number of misses, particularly when NC is small (with an increase in number of misses by 3).  

To deduce the effect of CFA selection, I compared the population reliability coefficient of the 

selected items after CFA with the one for the items selected in EFA (which also equaled to the 

comparison between Δρ0 and Δρ1). After the CFA selection, the population reliability coefficient 

has a small increase with a mean value of .024 (across all conditions). In particular, when the 
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original EFA sample is small (NE = 100), the CFA selection improves the reliability of the 

selected items (by .026 to .070 for NC = 100, and by .032 to .095 for NC = 800, see Table 5) 

except for conditions with no weak indicators in the item pool, which shows nearly no change. 

It seems that CFA does improve the scale development process. However, this 

improvement is based on the cost of an additional sample. Another interest of the present study 

was to determine, when the total sample size is constant, how different allocations to EFA and 

CFA would differ. The first comparison was between the one with a small NE (100) and a big NC 

(800), or the small-head approach, and the one with a big NE (800) and a small NC (100), or the 

big-head approach. The big-head approach is found to produce fewer cases with the population 

reliability coefficient greatly deviated from the baseline, particularly for conditions with high 

pW/pS, large f, small pS, and small λW. In a paired-sample Wilcoxon test it is found that the big-

head approach performed better with a statistical significance (median difference of 39 pairs = 

0.02, 95%CI = [.006, .034], T = 130, p < .001). 

Other comparisons were done between samples using the whole sample for EFA, or all-

head, and those using half for EFA and half for CFA, or half-head. For a total sample size of 200, 

Wilcoxon test did not find significant differences between the two approaches, with the median 

difference between the reliability coefficients for all-head and for half-head being 0.007, 95%CI 

= [–.001, .016], T = 270, p = .096. Interestingly, with the increase in total sample size, the half-

head approach outperforms the all-head approach, though the difference was small. At a total 

sample size of 400, the median difference for 42 pairs is –.005, 95%CI = [–.015, –.006], T = 630, 

p = .002; At 800, the median difference is –.002, 95%CI = [–.016, –.000], T = 785, p < .001.   

Discussion 

Results of EFA selection show that false alarm may be more than common, and that its 
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prevalence rate is influenced by number of indicators as well as number of factors. Even when 

the sample size or the participant-indicator ratio is large, the false alarm rate is not ignorable 

(about 15%). Also, as shown in Table 2, the inclusion of more weak indicators increases the 

chance of getting a false alarm, which can be due to the decrease in participant-indicator ratio as 

well as the increase of the base rate of weak indicators. On the other hand, the inclusion of more 

strong indicators does not seem to reduce the false alarm rate a lot. The decrease of participant-

indicator ratio may counter the effect of including more good quality items. In fact, when sample 

size is large (NE = 800), pS/f seems to make some differences (11.6 vs. 8.3 for median 

comparison, as shown in Table 2). Another factor that influences the false alarm rate is f, with 

higher f corresponds to higher false alarm rate.  

While the falsely included strong indicators have the chance to be identified and deleted 

in follow-up replications, it is not the case for misses. Yet the reality is that researchers usually 

would need to have a parsimonious set of items with a good enough psychometric properties. 

Thus it is a dilemma whether to discard an item or not. Nevertheless, given the cost of re-

creating an item and validating it, I would suggest one to be more conservative in making such a 

decision. As suggested by the present results, the miss rate is low (with a median value < 2%) 

across different conditions when the NE reached 400. Finally, though maybe potentially 

dangerous, item misspecification is the least common among the three selection errors, and is the 

most identifiable by considering the model χ
2
.  

The population reliability was used as an indicator for the overall impact of the selection 

errors. From the mean plot and the ANOVA results, it is found that conditions with more strong 

indicators and less weak indicators are more stable and with a higher reliability. Certainly one 

reason for the low reliability is due to the lack of strong indicators to be selected and the chances 
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of these items to be missed out, and the other reason would be the inflated false alarm rate with 

large pW/pS. 

With respect to selection error, generally a participant-indicator ratio of 10 to 1 is 

favorable. However, the results should be interpreted with cautions, as the present study had not 

taken errors in determining number of factors into considerations. As the techniques for 

determining f, like parallel analyses, scree plot or bootstrapping each had their own limitations 

(cf. Thompson, 2004), in real practice the selection error rates could be higher. The required 

sample size also depends on other factors. As MacCallum et al.'s (1999) suggested, a smaller 

sample size could be enough if the item loadings were strong. Yet, this is usually not known prior 

to EFA, and as Figure 2c shows that when weak loadings are close to but lower than the cutoff 

value it may even result in lower reliability of the selected items. Thus, without evidence of how 

“good” the qualities of the items are (in terms of loadings), a larger sample is more adequate.  

The introduction of CFA into the standard procedure of scale development in 

psychological research was probably a response to the selection errors (and also other biases like 

overextraction, underextraction) in EFA. In CFA or SEM in general, the model χ2
 and different 

fit-indexes were widely used in research. From the present result, NFI is the most successful 

among the eight in identifying selection errors (sensitivity) for all three decision errors but also 

leads to a high rejection of correct models (low in specificity). On the other hand, though the use 

of the model χ
2
 is still under hot debate (Barrett, 2007), in the present context it nevertheless 

shows the highest utility, particularly for misspecification. A final remark is that as the present 

cutoff employed is just one example from the many different research practices, and if a stricter 

cutoff like .95 was used for NNFI instead of .90, its sensitivity might be increased while the 

specificity was still acceptable. Future research could consider using an approach similar to Hu 
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and Bentler (1999) to evaluate the cutoffs of the fit-indexes.  

Another function of CFA is to identify weak indicators and discard them. After selection, 

the reliability of the scale did improve, particularly if the previous EFA sample is small. Yet it 

also leads to more misses, and might result in a structure where a factor only includes three or 

fewer items. Though the problem was not handled here, some researchers may consider deleting 

the factor, which sometimes represents loss in conceptual integrity for the construct of interest. 

The CFA selection procedure, given its importance, needs further investigation in the future.  

Finally, the comparison between the different allocations of sample sizes to EFA and CFA 

suggested that the utility of CFA is somehow limited. The comparison between the big-head 

approach and the small-head approach showed that a large sample CFA could not compensate for 

the errors in a small sample EFA in terms of reliability. On the other hand, despite its importance, 

the effect of the EFA sample size seemed to reach a ceiling after NE = 400, as implied from the 

comparison of the half-head and all-head approach showing that the two approaches did not 

differ. Thus it seems that CFA played its role to improve the selection only on the basis that the 

previous EFA is large enough so that the selection errors are not causing large problems.  

Limitations 

Although the present research tried to capture and study the real practice in using factor 

analysis for scale development, as a Monte Carlo study it is not possible to model perfectly the 

things in real life. There were certain aspects that my simulation did not cover. For example, 

while Sass (2010) suggested that the magnitude of the interfactor correlation could influence the 

stability of the EFA solution and estimated loadings, the present study just chose a typical value 

of .3. Nevertheless, some construct may be composed of factors which are virtually uncorrelated, 

and some may have factors more highly correlated than .3. Under different levels the selection 
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error rates, performance of CFA fit-indexes, and sample size requirements may change.  

One should also be aware that the present simulations are based on simple factor 

structure. If the population factor structure were complex with cross-loadings besides the 

interfactor correlations (cf. Asparouhov & Muthén, 2009), all model specifications in CFA with a 

simple structure would lead to model misspecification. In the latter situation it would be hard to 

judge whether an item had been put to a wrong factor. 

Suggestions for Using Factor Analysis 

On the basis of the reported results in the present study and also the previous work by 

other researchers (cf. Brown, 2006; Conway & Huffcutt, 2003; Fabriegar et al., 1999; Henson & 

Roberts, 2006; Hahn, 2006; MacCallum et al., 2001; Osborne et al., 2008; Worthington & 

Whittaker, 2006), several suggestions for a better practice of EFA and CFA can be drawn, and 

these are shown in Table 6.  

In summary, this study adopted a perspective of selection error to examine the 

performance of factor analyses, which I believed was practical to scale developers. Results 

showed that when sample size was small, when many factors were to be extracted, or when many 

weak indicators were present in the item-pool relative to the number of strong indicators, 

selection errors occurred at a non-negligible rates and lead to reduction in population reliability. 

Researchers should take different factors (quality of sample pool, complexity of the construct, 

etc) into account in doing sample size planning.    



FACTOR ANALYSIS IN SCALE DEVELOPMENT 26 

References 

Anderson, J. C., & Gerbing, D. W. (1984). The effect of sampling error on convergence, 

improper solutions, and goodness-of-fit indices for maximum likelihood confirmatory 

factor analysis. Psychometrika, 49, 155–173. doi:10.1007/BF02294170 

Asparouhov, T., & Muthén, B. (2009). Exploratory Structural Equation Modeling. Structural 

Equation Modeling, 16, 397–438. doi:10.1080/10705510903008204 

Barrett, P. (2007). Structural equation modelling: adjudging model fit. Personality and Individual 

Differences, 42, 815–824. doi:10.1016/j.paid.2006.09.018 

Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107, 

238–246. doi:10.1037/0033-2909.107.2.238 

Bentler, P. M. (1995). EQS structural equations program manual. Encino, CA: Multivariate 

Software. 

Bentler, P. M., & Bonett D. G. (1980). Significance tests and goodness of fit in the analysis of 

covariance structures. Psychological Bulletin, 88, 588–606. doi:10.1037//0033-

2909.88.3.588 

Brown, T. A. (2006). Confirmatory factor analysis for applied research. New York, NY: 

Guildford Press. 

Cheung, M. W. L. (2009, Feb 17). Common Myths (and Facts) in Data Analysis. Powerpoint 

slides of workshop. Retrieved from http://courses.nus.edu.sg/course/psycwlm/internet/ 

Conway, J. M., & Huffcutt, A. I. (2003). A review and evaluation of exploratory factor analysis 

practices in organizational research. Organizational Research Methods, 6, 147–168. 

doi:10.1177/1094428103251541 

Cudeck, R., & MacCallum, R. C. (Eds.). (2007). Factor analysis at 100. Mahwah, NJ: Lawrence 

http://dx.doi.org/10.1007/BF02294170
http://dx.doi.org/10.1080/10705510903008204
http://dx.doi.org/doi:10.1016/j.paid.2006.09.018
http://dx.doi.org/10.1037%2F0033-2909.107.2.238
http://dx.doi.org/10.1037/0033-2909.88.3.588
http://dx.doi.org/10.1037/0033-2909.88.3.588
http://courses.nus.edu.sg/course/psycwlm/internet/
http://dx.doi.org/10.1177/1094428103251541


FACTOR ANALYSIS IN SCALE DEVELOPMENT 27 

Erlbaum Associates.  

Cudeck, R., & O'Dell, L. L. (1994). Applications of standard error estimates in unrestricted 

factor analysis: significance tests for factor loadings and correlations. Psychological 

Bulletin, 115, 475–487. doi:10.1037//0033-2909.115.3.475 

de Winter, J. C. F., Dodou, D., & Wieringa, P. A. (2009). Exploratory factor analysis with small 

sample sizes. Multivariate Behavioral Research, 44, 147–181. 

doi:10.1080/00273170902794206 

DeVellis, R. F. (2003). Scale development: theory and applications (2nd ed.). Thousand Oaks, 

CA: Sage Publications. 

Donnellan, M. B., Oswald, F. L., Baird, B. M., & Lucas, R. E. (2006). The Mini-IPIP scales: 

tiny-yet-effective measures of the Big Five factors of personality. Psychological 

Assessment, 18, 192–203. doi:10.1037/1040-3590.18.2.192 

Fabrigar, L. R., Wegener, D. T., MacCallum, R. C., & Strahan, E. J. (1999). Evaluating the use of 

exploratory factor analysis in psychological research. Psychological Methods, 4, 272–

299. doi:10.1037//1082-989X.4.3.272 

Fan, X., Thompson, B., & Wang, L. (1999). Effects of sample size, estimation method, and 

model misspecification on structural equation modeling fit-indexes. Structural Equation 

Modeling, 6, 56–83. doi:10.1080/10705519909540119 

Fava, J. L., & Velicer, W. F. (1992). The effects of overextraction on factor and component 

analyses. Educational and Psychological Measurement, 56, 907–929. 

doi:10.1207/s15327906mbr2703_5 

Fava, J. L., & Velicer, W. F. (1996). The effects of underextraction on factor and component 

analysis. Multivariate Behavioral Research, 27, 387–415. 

http://dx.doi.org/10.1037/0033-2909.115.3.475
http://dx.doi.org/10.1080/00273170902794206
http://dx.doi.org/10.1037/1040-3590.18.2.192
http://dx.doi.org/10.1037/1082-989X.4.3.272
http://dx.doi.org/10.1080/10705519909540119
http://dx.doi.org/10.1207/s15327906mbr2703_5


FACTOR ANALYSIS IN SCALE DEVELOPMENT 28 

doi:10.1177/0013164496056006001 

Ford, J. K., MacCallum, R. C., & Tait, M. (1986). The application of exploratory factor analysis 

in applied psychology: a critical review and analysis. Personnel Psychology, 39, 291–

314. doi:10.1111/j.1744-6570.1986.tb00583.x 

Gerbing, D. W., & Anderson, J. C. (1985). The effects of sampling error and model 

characteristics on parameter estimation for maximum likelihood confirmatory factor 

analysis. Multivariate Behavioral Research, 20, 255–271. 

doi:10.1207/s15327906mbr2003_2 

Gorsuch, R. L. (1997). Exploratory factor analysis: its role in item analysis. Journal of 

Personality Assessment, 68, 532–560. doi:10.1207/s15327752jpa6803_5 

Guadagnoli, E., & Velicer, W. F. (1988). Relation to sample size to the stability of component 

patterns. Psychological Bulletin, 103, 265–275. doi:10.1037//0033-2909.103.2.265 

Haig, B. D. (2005). Exploratory factor analysis, theory generation, and scientific method. 

Multivariate Behavioral Research, 40, 303–329. doi:10.1207/s15327906mbr4003_2 

Henson, R. K., & Roberts, J. K. (2006). Use of exploratory factor analysis in published research: 

common errors and some comment on improved practice. Educational and Psychological 

Measurement, 66, 393–416. doi:10.1177/0013164405282485 

Hogarty, K. Y., Hines, C. V., Kromrey, J. D., Ferron, J. M., & Mumford, K. R. (2005). The 

quality of factor solutions in exploratory factor analysis: the influence of sample size, 

communality, and overdetermination. Educational and Psychologiocal Measurement, 65, 

202–226. doi:10.1177/0013164404267287 

Hogarty, K. Y., Kromrey, J. D., Ferron, J. M., Hines, C. V. (2004). Selection of variables in 

exploratory factor analysis: an empirical comparison of a stepwise and traditional 

http://dx.doi.org/10.1177/0013164496056006001
http://dx.doi.org/10.1111/j.1744-6570.1986.tb00583.x
http://dx.doi.org/10.1207/s15327906mbr2003_2
http://dx.doi.org/10.1207/s15327752jpa6803_5
http://dx.doi.org/10.1037/0033-2909.103.2.265
http://dx.doi.org/10.1207/s15327906mbr4003_2
http://dx.doi.org/10.1177/0013164405282485
http://dx.doi.org/10.1177/0013164404267287


FACTOR ANALYSIS IN SCALE DEVELOPMENT 29 

approach. Psychometrika, 69, 593–611. doi:10.1007/BF02289857 

Hu, L., & Bentler, P. M. (1998). Fit indices in covariance structure modeling: sensitivity to 

underparameterized model misspecification. Psychological Methods, 3, 424–453. 

doi:10.1037/1082-989X.3.4.424 

Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: 

conventional criteria versus new alternatives. Structural Equation Modeling, 6, 1–55. 

doi:10.1080/10705519909540118 

Hurley, A. E., Scandura, T. A., Schriesheim, C. A., Brannick, M. T., Seers, A., Vandenberg, R. J., 

& Williams, L. J. (1997). Exploratory and confirmatory factor analysis: guidelines, 

issues, and alternatives. Journal of Organizational Behavior, 18, 667–683. 

doi:10.1002/(SICI)1099-1379(199711)18:6<667::AID-JOB874>3.0.CO;2-T 

Jackson, D. L. (2001). Sample size and number of parameter estimates in maximum likelihood 

confirmatory factor analysis: a monte carlo investigation. Structural Equation Modeling, 

8, 205–223. doi:10.1207/S15328007SEM0802_3 

Jöreskog, K. G., & Sörbom, D. (1996). LISREL 8: user's reference guide. Chicago: Scientific 

Software International.   

Kahn, J. H. (2006). Factor analysis in counseling psychology research, training, and practice: 

principles, advances, and applications. The Counseling Psychologist, 34, 684–718. 

doi:10.1177/0011000006286347 

Kerlinger, F. N., & Lee, H. B. (2000). Foundations of behavioral research (4th ed.). Fort Worth, 

TX: Harcourt College Publishers.  

Labbe, A. K., & Maisto, S. A. (2010). Development of the Stimulant Medication Outcome 

Expectancies Questionnaire for college students. Addictive Behaviors, 35, 726–729. 

http://dx.doi.org/10.1007/BF02289857
http://dx.doi.org/10.1037/1082-989X.3.4.424
http://dx.doi.org/10.1080%2F10705519909540118
http://dx.doi.org/10.1002/(SICI)1099-1379(199711)18:6%3c667::AID-JOB874%3e3.0.CO;2-T
http://dx.doi.org/10.1207/S15328007SEM0802_3
http://dx.doi.org/10.1177/0011000006286347


FACTOR ANALYSIS IN SCALE DEVELOPMENT 30 

doi:10.1016/j.addbeh.2010.03.010 

Little, T. D., Lindenberger, U., & Nesselroade, J. R. (1999). On selecting indicators for 

multivariate measurement and modeling with latent variables: when “good” indicators are 

bad and “bad” indicators are good. Psychological Methods, 4, 192–211. 

doi:10.1037/1082-989X.4.2.192 

MacCallum, R. C. Roznowski, M., & Necowitz, L. B.(1992). Model modifications in covariance 

structure analysis: the problem of capitalization on chance. Psychological Bulletin, 111, 

490–504. doi:10.1037//0033-2909.111.3.490 

MacCallum, R. C., Widaman, K. F., Preacher, K. J., Hong, S. (2001). Sample size in factor 

analysis: the role of model error. Multivariate Behavioral Research, 36, 611–637. 

doi:10.1207/S15327906MBR3604_06 

MacCallum, R. C., Widaman, K. F., Zhang, S., & Hong, S. (1999). Sample size in factor anlysis. 

Psychological Methods, 4, 84–99. doi:10.1037//1082-989X.4.1.84 

Marsh, H. W., Hau, K. T., Balla, J. R., & Grayson, D. (1998). Is more ever too much? The 

number of indicators per factor in confirmatory factor analysis. Multivariate Behavioral 

Research, 33, 181–220. doi:10.1207/s15327906mbr3302_1 

McDonald, R. P. (1985). Factor analysis and related methods. Hillsdale, NJ: Lawrence Erlbaum. 

Mundfrom, D. J., Shaw, D. G., & Ke, T. L. (2005). Minimum sample size recommendations for 

conducting factor analyses. International Journal of Testing, 5, 159–168. 

doi:10.1207/s15327574ijt0502_4 

Noone, J. H., Stephens, C., & Alpass, F. (2010). The process of retirement planning scale 

(PRePS): development and validation. Psychological Assessment, 22, 520–531. 

doi:10.1037/a0019512 

http://dx.doi.org/10.1016/j.addbeh.2010.03.010
http://dx.doi.org/10.1037%2F1082-989X.4.2.192
http://dx.doi.org/10.1037/0033-2909.111.3.490
http://dx.doi.org/10.1207%2FS15327906MBR3604_06
http://dx.doi.org/10.1037/1082-989X.4.1.84
http://dx.doi.org/10.1207/s15327906mbr3302_1
http://dx.doi.org/10.1207/s15327574ijt0502_4
http://dx.doi.org/10.1037/a0019512


FACTOR ANALYSIS IN SCALE DEVELOPMENT 31 

Nunnally, J. C. (1978). Psychometric theory (2nd ed.). New York: McGraw-Hill. 

Nunnally, J. C., & Bernstein, I. (1994). Psychometric theory (3rd ed.). New York: McGraw-Hill. 

Osborne, J. W., Costello, A. B., & Kellow, J. T. (2008). Best practices in exploratory factor 

analysis. In J. W. Osborne (Ed.), Best practices in quantitative methods (pp. 86–99). 

Thousand Oaks, California: Sage Publications. 

R Development Core Team (2010). R: a language and environment for statistical computing 

(reference index version 2.12.0). Vienna, Austria: R Foundation for Statistical 

Computing. Retrieved from http://www.R-project.org 

Raykov, T. (2007). Reliability if deleted, not 'alpha if deleted': evaluation of scale reliability 

following component deletion. Structural Equation Modeling, 60, 201–216. 

doi:10.1348/000711006X115954 

Radloff, L. S. (1977). The CES-D scale: a self-report depression scale for research in the general 

population. Applied Psychological Measurement, 1, 385–401. 

doi:10.1177/014662167700100306 

Revelle, W. (2010). psych: procedures for personality and psychological research (version 1.0-

90) [R package]. Evanston, Illinois: Northwestern University. Retrieved from 

http://personality-project.org/r 

Sass, D. A. (2010). Factor loading estimation error and stability using exploratory factor analysis. 

Educational and Psychological Measurement, 70, 557–577. 

doi:10.1177/0013164409355695 

Scheier, M. F., Carver, C. S., & Bridges, M. W. (1994). Distinguishing optimism from 

neuroticism (and trait anxiety, self-mastery, and self-esteem): a reevaluation of Life 

Orientation Test. Journal of Personality and Social Psychology, 67, 1063–1078. 

http://www.r-project.org/
http://dx.doi.org/10.1348/000711006X115954
http://dx.doi.org/10.1177/014662167700100306
http://personality-project.org/r
http://dx.doi.org/10.1177/0013164409355695


FACTOR ANALYSIS IN SCALE DEVELOPMENT 32 

doi:10.1037//0022-3514.67.6.1063 

Sörbom, D. (1989). Model modification. Psychometrika, 54, 371–384. doi:10.1007/BF02294623 

Spearman, C. (1904). “General intelligence,” objectively determined and measured. American 

Journal of Psychology, 15, 201–293. Retrieved from 

http://library.isb.edu/digital_collection/general_intelligence.pdf 

Spearman, C. (1920). Manifold sub-theories of “the Two Factors”. Psychological Review, 27, 

159–172. doi:10.1037/h0068562 

Steiger, J. H. (1990). Structural model evaluation and modification: An interval estimation 

approach. Multivariate Behavioral Research, 25, 173–180. 

doi:10.1207/s15327906mbr2502_4 

Tabachnick, B. G., & Fidell, L. S. (2007). Using multivariate statistics (5th ed.). New York: 

Allyn and Bacon. 

Tanner, W. P., Jr., & Swets, J. A. (1954). A decision-making theory of visual detection. 

Psychological Review, 61, 401–409. doi:10.1037/h0058700 

Thompson, B. (2004). Exploratory and confirmatory factor analysis: understanding concepts 

and applications. Washington, DC: American Psychological Association. 

Tucker, L. R., & Lewis, C. (1973). A reliability coefficient for maximum likelihood factor 

analysis. Psychometrika, 38, 1–10. doi:10.1007/BF02291170 

Velicer, W. F., & Fava, J. L. (1998). Effects of variable and subject sampling on factor pattern 

recovery. Psychological Methods, 3, 213–251. doi:10.1037/1082-989X.3.2.231 

Worthington, R. L., & Whittaker, T. A. (2006). Scale development research: a content analysis 

and recommendations for best practices. The Counseling Psychologist, 34, 806–838. 

doi:10.1177/0011000006288127 

http://dx.doi.org/10.1037/0022-3514.67.6.1063
http://dx.doi.org/10.1007/BF02294623
http://library.isb.edu/digital_collection/general_intelligence.pdf
http://dx.doi.org/10.1037/h0068562
http://dx.doi.org/10.1207/s15327906mbr2502_4
http://dx.doi.org/10.1037/h0058700
http://dx.doi.org/10.1007/BF02291170
http://dx.doi.org/10.1037/1082-989X.3.2.231
http://dx.doi.org/10.1177/0011000006288127


FACTOR ANALYSIS IN SCALE DEVELOPMENT 33 

Wright, M., Creed, P., & Zimmer-Gembeck, J. (2010). The development and initial validation of 

a brief daily hassles scale suitable for use with adolescents. European Journal of 

Psychological Assessment, 26, 220–226. doi:10.1027/1015-5759/a000029 

 

http://dx.doi.org/10.1027/1015-5759/a000029


FACTOR ANALYSIS IN SCALE DEVELOPMENT 34 

Footnotes 

1
The present study took a position different from the theoretically ideal. While the latter 

implied that all indicators with non-zero relations should be retained, as pointed out by Fabriger 

et al. (1999) the inclusion of items with low communalities affected the EFA estimation.  Little, 

Lindenberger, and Nesselroade (1999) also suggested that if one has a strong theory for the 

understanding of the construct (which is a favorable situation for scale development), selecting 

fewer indicators with high communalities resembles more to the goal of parsimony. The present 

study followed Hogarty et al. (2004) and Hogarty et al. (2005) to exclude items with weak 

loadings in scale development.  

2
Here the term indicators and items are used interchangeably.   

3
When selected weak indicators are specified to a factor that they have no associations, 

the error is counted as false alarm. 

4
Sometimes researchers would have their theory in advance and skip the process of EFA 

and go directly to CFA. However, as argued by Haig (2005) and Hurley et al. (1997), the two 

techniques were usually complementary, with EFA generating specific hypotheses and CFA 

testing them. 

5
More often researchers preferred to use significant test to determine whether the 

loadings were zero. In fact, I had tried using that approach for CFA selection, and the mean 

deviation in reliability using that approach was very similar to the one used in this study (with a 

mean difference smaller than .00001). However, one conceptual problem lead us to discard that 

method: A non-significant loading would mean a lack of evidence that the loading is higher than 

zero, yet in the present study all loadings are above zero in the population. Thus, being unable to 

support that the item is significantly larger than zero is always a Type II decision error. 
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6
The formula for omega-squared: 

ω2 =
𝑆𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑓𝑓𝑒𝑐𝑡−𝑑𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑓𝑟𝑒𝑒𝑑𝑜𝑚×𝑀𝑒𝑎𝑛 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 𝑜𝑓 𝑒𝑟𝑟𝑜𝑟

𝑇𝑜𝑡𝑎𝑙 𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠+𝑀𝑒𝑎𝑛 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 𝑜𝑓 𝑒𝑟𝑟𝑜𝑟
 

7
a non-parametric test for comparison of two means, used because of the non-normality 

of the distribution of Δρ.  
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Table 1 

List of Variables to be Manipulated in the Simulation 

Variable Symbol 

 

Value 

Levels of 

manipulation  

Sample size 

For EFA 

For CFA 

N 

NE 

NC 

 (NE, NC) = (100,100), (200, 

200), (400, 400), (800, 800), 

(100, 800), (800, 100) 

6 

Number of factors f  f = 3, 5, 7 3 

Number of items per factors  p    

Strong indicators pS/f  pS/f = 3, 6 2 

Weak indicators pW/f  pW/f = 0, pS/f, 2pS/f 3 

Magnitude of items  λ  λSi = .80 – (i-1)*.30/pS,  

where i = 1, 2,…pS-1, pS 

λW = .1, .2, .3 

3 Strong indicators
a 

λS  

Weak indicators λW  

a
The set of magnitude for strong indicators are fixed across all conditions. 
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Table 2 

Median Values of Replications Committing Selection Errors After Exploratory Factor Analyses  

  

False alarm  

 

Miss  

 

Misspecification  

 

NE=100 NE=200 NE=400 NE=800 NE=100 NE=200 NE=400 NE=800 NE=100 NE=200 NE=400 NE=800 

f                         

3 96.6 77.6 34.7 4.4 33.1 5.1 0.2 0.0 1.3 0.0 0.0 0.0 

5 100.0 93.3 59.3 9.9 78.0 15.3 0.6 0.0 11.8 0.0 0.0 0.0 

7 100.0 98.4 73.0 14.7 96.7 33.8 1.6 0.0 39.7 1.3 0.0 0.0 

pS/f 
            

3 100.0 94.2 54.2 11.6 84.6 26.0 1.4 0.0 19.9 1.0 0.0 0.0 

6 99.4 94.7 55.4 8.3 64.3 9.2 0.2 0.0 1.6 0.0 0.0 0.0 

pW/pS 
            

0 --- --- --- --- 56.5 12.8 0.4 0.0 1.1 0.0 0.0 0.0 

1 99.3 86.5 46.6 7.2 74.6 13.5 0.2 0.0 8.0 0.1 0.0 0.0 

2 100.0 98.0 70.3 13.8 78.0 16.8 0.9 0.0 18.6 0.2 0.0 0.0 

λW 
            

0.1 95.0 29.7 1.0 0.0 88.4 20.2 0.7 0.0 29.5 0.7 0.0 0.0 

0.2 99.4 92.1 55.4 9.4 78.5 14.3 0.8 0.0 10.0 0.2 0.0 0.0 

0.3 100.0 100.0 100.0 100.0 70.2 13.5 0.3 0.0 2.3 0.0 0.0 0.0 

Note. Based on percentages of 246 conditions. For each condition, the percentage equaled to the number of replications with the 

selection error divided by the total number of replications, or 500. 
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Table 3 

ANOVA Results for the Deviation of Population Reliability from Baseline (Δρ0)   

Source df SS F ω
2
 

f 2 34.63 11900.99 .04 

pS 1 37.73 25933.35 .05 

pW/pS 2 72.09 24775.64 .09 

λW 2 1.60 549.38 .00 

NE 3 180.90 41448.39 .23 

f × pS 2 2.18 748.20 .00 

f × pW/pS 4 19.12 3284.76 .02 

pS × pW/pS 2 3.94 1354.39 .01 

f × λW 4 5.04 865.81 .01 

pS × λW 2 4.18 1435.84 .01 

pW/pS × λW 2 3.24 1114.02 .00 

f × NE 6 29.67 3398.85 .04 

pS × NE 3 59.79 13699.14 .08 

pW/pS × NE 6 44.93 5147.79 .06 

λW × NE 6 44.17 5059.94 .06 

f × pS × pW/pS 4 10.26 1763.47 .01 

f × pS × λW 4 0.34 58.30 .00 

f × pW/pS × λW 4 1.21 207.20 .00 

pS × pW/pS × λW 2 0.22 74.46 .00 

f × pS × NE 6 5.38 616.68 .01 

f × pW/pS × NE 12 7.50 429.38 .01 

pS × pW/pS × NE 6 8.82 1009.85 .01 

f × λW × NE 12 4.54 259.92 .01 

pS × λW × NE 6 10.56 1210.07 .01 

pW/pS × λW × NE 6 5.76 659.63 .01 

f × pS × pW/pS × λW 4 0.65 110.99 .00 

f × pS × pW/pS × NE 11 1.13 70.33 .00 

f × pS × λW × NE 12 1.28 73.15 .00 

f × pW/pS × λW × NE 12 0.44 25.25 .00 

pS × pW/pS × λW × NE 6 1.10 125.51 .00 

f × pS × pW/pS × λW × NE 10 0.38 26.13 .00 

Error 122835 178.70 

  Note. All effects have a p-value <.0001. 
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Table 4 

Mean Change in Selection Errors from Before to After Confirmatory Factor Analyses  

 

 

 

False alarm   Miss  

 

Misspecification  

 
NE 100 200 400 800 100 800 100 200 400 800 100 800 100 200 400 800 100 800 

 NC 100 200 400 800 800 100 100 200 400 800 800 100 100 200 400 800 800 100 

f                    

3  −4.2 −3.2 −2.5 −2.1 −4.3 −2.1 1.8 0.6 0.1 0.0 0.1 1.8 0.0 0.0 0.0 0.0 −0.1 0.0 

5  −7.1 −5.2 −4.3 −3.4 −7.2 −3.4 3.0 0.9 0.1 0.0 0.4 3.0 −0.3 0.0 0.0 0.0 −0.3 0.0 

7  −7.8 −7.3 −5.9 −4.8 −8.4 −4.7 4.0 1.3 0.1 0.0 0.8 4.2 −0.5 −0.1 0.0 0.0 −0.6 0.0 

pS/f                    

3  −5.1 −3.9 −3.0 −2.4 −5.8 −2.4 2.8 1.1 0.1 0.0 0.6 2.9 −0.4 −0.1 0.0 0.0 −0.4 0.0 

6  −6.9 −6.4 −5.5 −4.5 −7.0 −4.4 2.7 0.8 0.1 0.0 0.1 3.1 −0.1 0.0 0.0 0.0 −0.1 0.0 

pW/pS                    

0  --- --- --- --- --- --- 2.8 0.9 0.1 0.0 0.0 3.1 0.0 0.0 0.0 0.0 0.0 0.0 

1  −4.6 −3.5 −2.9 −2.3 −4.8 −2.3 2.9 0.9 0.1 0.0 0.4 3.0 −0.2 0.0 0.0 0.0 −0.3 0.0 

2  −8.0 −6.9 −5.6 −4.6 −8.4 −4.5 2.5 0.9 0.1 0.0 0.5 3.0 −0.3 −0.1 0.0 0.0 −0.4 0.0 

λW                    

0.1  −2.4 −0.5 0.0 0.0 −3.0 0.0 2.8 1.0 0.1 0.0 0.4 3.0 −0.3 −0.1 0.0 0.0 −0.3 0.0 

0.2  −4.8 −2.8 −0.9 −0.1 −5.2 −0.1 2.8 0.9 0.1 0.0 0.5 3.1 −0.3 0.0 0.0 0.0 −0.4 0.0 

0.3  −10.2 −12.1 −11.8 −10.2 −10.5 −10.1 2.6 0.9 0.1 0.0 0.2 2.9 −0.1 0.0 0.0 0.0 −0.2 0.0 

                    

Overall  −6.0 −5.2 −4.2 −3.5 −6.4 −3.4 2.7 0.9 0.1 0.0 0.4 3.0 −0.2 −0.0 −0.0 0.0 −0.3 0.0 

Note. Based on 1,260,000 samples. Each cell represented the mean values for all valid replications corresponded to the manipulated 

level of the studied variables. Replications with the confirmatory factor analyses solution not computable were excluded (n = 3,909).  
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Table 5 

Mean Change in Population Reliability from Before to After Confirmatory Factor Analyses  

 
NE 100 200 400 800 100 800 

 NC 100 200 400 800 800 100 

f        

3  .035 .019 .012 .010 .044 .004 

5  .048 .022 .013 .010 .065 .005 

7  .052 .025 .012 .009 .079 .004 

pS/f        

3  .063 .031 .016 .011 .087 .006 

6  .026 .013 .009 .008 .032 .003 

pW/pS        

0  −.005 .000 .000 .000 .001 -.005 

1  .042 .020 .013 .010 .054 .004 

2  .070 .032 .017 .013 .095 .007 

λW        

0.1  .031 .008 .000 .000 .050 -.005 

0.2  .062 .029 .009 .001 .082 -.004 

0.3  .045 .036 .034 .032 .055 .026 

        

Overall  .044 .022 .013 .010 .061 .004 

Note. Based on 1,260,000 samples. Each cell represented the mean change in population 

reliability for all replications corresponded to the manipulated level of the studied variables. 

Replications with the confirmatory factor analyses solution not computable were excluded (n = 

3,909). 
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Table 6 

Suggestions for Using Exploratory and Confirmatory Factor Analyses in Scale Development  

1.  Justify the use of a particular cutoff value, and do an a priori analysis of the consequences 

of the cutoff. For example, if one uses a cutoff of .32 and selects 10 items, then the expected 

minimum reliability coefficient is .53 using Raykov (2007)'s formula. If one uses a cutoff 

of .5, then coefficient is .77. Compare the results of the coefficient based on the EFA 

estimated loadings with the expected minimum as a piece of information for selection. 
2.  Do not simply aim for an infinitely large item pool, because as the proportion of weak 

indicators increase, the odds for decision errors also increase. Make sure that the items are 

generated with a sound theoretical background. 
3.  Beware of the possibility of committing false alarm, miss, and misspecification. 

Particularly, as miss is an irreversible selection error, be cautious before discarding an item, 

especially when the sample size for EFA is not large (smaller than 200, or participant-

indicator ratio lower than 5:1, from Figure 1). 
4.  Be more conservative if the item pool is not large. Discarding items can result in models 

with factors having less than three indicators, which poses problems for conceptual 

integrity of the factor (see Little et al., 1999). Besides working on the quality of the item 

pool, researchers could consider using significant test instead of an absolute cutoff (as 

suggested by Cudeck & O'Dell, 1994). 
5.  When the total sample size is moderate or large (more than 400), divide the sample into one 

for EFA and one for CFA. When the toal sample size is small (less than 400), in the absence 

of firm theoretical reasons, use the whole sample for EFA. 
6.  In looking at CFA model fit, take into account whether the model χ

2
 indicates a significant 

poor-fit. It is particularly informative for model misspecifications, compared to other fit-

indexes. See Barrett (2007) for the pros and cons of deciding model rejection based on the 

model χ
2
 

7.  Continue to replicate the scale even after the second CFA replication, because selection 

errors can still be present after CFA. 
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Figure 1a. Boxplot of false alarm rate by participant-indicator ratio after exploratory factor 

analysis. The box denoted the first quartile, the median, and the third quartile of the data. Dots 

showed outliers which were outside 1.5×interquartile. For all the above levels of participant-

indicator ratio, the proportion of cases with at least one item with weak loadings “falsely” 

included was not negligible, but with the increase of the ratio the false alarm rate decreased.   
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Figure 1b. Boxplot of miss rate by participant-indicator ratio after exploratory factor analysis. 

The box denoted the first quartile, the median, and the third quartile of the data. Dots showed 

outliers which were outside 1.5×interquartile. Only when the ratio reached 7:1 would there be 

generally less than 10% of the cases with at least one item with a strong loading be “falsely” 

discarded.  
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Figure 1c. Boxplot of misspecification rate by participant-indicator ratio after exploratory factor 

analysis. The box denoted the first quartile, the median, and the third quartile of the data. Dots 

showed outliers which were outside 1.5×interquartile. When the ratio reached 5:1 there were 

generally less than 10% of the cases with at least one item mis-specified to a factor other than the 

one it was supposed to load in the population.  
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Figure 2a. Comparison of population reliability deviation from the baseline (with all and only 

strong indicators selected). The line graph showed the mean deviations of all replications with 

the error bar indicating the standard deviation. For conditions with more strong indicators were 

smaller, the variability was smaller, and there was less deviation from the baseline when sample 

size was small or moderate. When sample sizes increased, the two groups converged.  
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Figure 2b. Comparison of population reliability deviation from the baseline (with all and only 

strong indicators selected). The line graph showed the mean deviations of all replications with 

the error bar indicating the standard deviation. For conditions with fewer or none weak indicators 

in the original item pool, the variability was smaller, and there was less deviation from the 

baseline. When sample sizes increased, the mean deviation for the three groups started to 

converge, yet the variability was still higher for the high-weak-indicator-proportion group.  
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 Figure 2c. Comparison of population reliability deviation from the baseline (with all and only 

strong indicators selected). The line graph showed the mean deviations of all replications with 

the error bar indicating the standard deviation. For conditions with weak loadings in population 

equaled .3, the variability was smaller, yet the mean deviation from the baseline was larger.   
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 Figure 3. Selection error sensitivity and overall specificity of fit-indexes in confirmatory 

factor analysis to selection errors in prior exploratory factor analysis. The bars showed the 

selection error sensitivity, which is the ratio between the number of replications with a poor 

fit and with a kind of selection error to the total number of replications without that error. The 

red line is the overall specificity, which is the ratio between the number of replications with a 

good fit and without any selection errors to the total number of replications without any 

selection errors. 
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Appendix A 

Consider a scale with p items. Let λi be the symbol for factor loadings, where i equals 

to 1, 2, …, p – 1, p. The variances of an individual item, σ𝑖𝑖
2 , could be divided as 

σ𝑖𝑖
2 = λ𝑖

2σ𝑇
2 + σ𝑈

2  (1),  

where σ𝑇
2  equals to the variance of the latent factor score (or true score), and σ𝑈

2  equals to the 

variance accounted by the uniqueness (i.e. the variance of an item score not explained by the 

common factor) of the item. As suggested by the classical test theory and the formula used by 

Raykov (2007, p.203), the reliability of a measure, ρY, is defined as  

ρ𝑌 =
(∑ λ𝑖

𝑝
𝑖=1 )

2

(∑ λ𝑖
𝑝
𝑖=1

)
2

+∑ Ψ𝑖𝑖
𝑝
𝑖=1

 (2),  

where Ψ𝑖𝑖 refers to variance-covariance matrix for the uniquenesses of items, which has σ𝑈
2  as 

its diagonal elements. Assume that the uniquenesses does not correlate with each other, which 

means that the only source of covariance between items is the common factor variance (and 

no common method variance). Thus, Ψii is a diagonal matrix.  

Consider a set of five items each having a loading of .6 (λ1 = λ2 = … = λi = .7) on a 

factor in the population. This means that for each item, 36% of the variances could be 

explained by the common method variance. Assume that σ𝑇
2  equals one, which implies that 

σ𝑈𝑖
2 = 1 − .36 = .64. Using formula (2), the reliability for this scale in the population would 

be  

ρ𝑌 =
(.6×5)2

(.6×5)2+.64×5
= .738,  

which meet the convention of .7 level. However, if one of them was replaced by an item with 

a loading of .1, reliability would then drop to  

ρ𝑌 =
(.6 × 4 + .1)2

(.6 × 4 + .1)2 + (.64 × 4 + .99)
= .638 

which beneath the conventional level.  
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 This lowered reliability of the scale could then attenuate its validity using other 

criterion variable W (Thompson, 2003). If the latent factor of the scale have a population 

correlation ρ𝑌𝑊 = .5 with W, its estimated value 𝑟𝑌𝑊  using the scale with five .6 items would 

be, by the formula 

𝑟𝑌𝑊 = √ρ𝑌ρ𝑊ρ𝑌𝑊 

and assume that the measurement for W contains no error, then 𝑟𝑌𝑊 = .429. However, if one 

item with loading equaled to .1 is selected, YWr  would drop to .399. With the strong indicator 

loadings higher or the item selected fewer, or the number of weak indicators selected 

increases, this attenuation effect would be more significant (see Figure A1).  
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Figure A1. Relations between loading of strong indicators and drop in reliability coefficients 

under varying conditions of total number of items. In each condition, number of weak 

indicators equaled 1, and its loading equaled 0.1. Drop in reliability coefficients referred to 

the decrease in reliability coefficients when one strong indicator was replaced by a weak 

indicator. 
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Appendix B 

Characteristics of 23 recent articles about scale development in PsycINFO: 

Study 

Cutoff for low 

factor loadings 

 Cutoff for cross-

loadings
a
 

Any guide-

lines cited? NE NC 

Initial number 

of items 

Final number of 

items 

1. Kim, Han, & Yoon .50  .30 Yes 488 451 103 15 

2. Wood, Worthington, Exline, 

Yali, Aten, & McMinn .75 

 

.20 No 394 93 11 9 

3. Şimşek .35 

 

.10 No 352 / 178 

352 / 227 / 

178
c
 21 17 / 12 

4. Wright, Creed, Zimmer-

Gembeck .40 

 

Not mentioned
b
 No 212 236 49 14 

5. Osberg et al. .40  NA No 228 343 29 15 

6. Wei, Alvarez, Ku, Russell, 

Bonett .45 

 

.30 No 328 328
c
 41 25 

7. Wang & Chang .60  Not mentioned
b
 No 164 433 56 27 

8. Armfield Based on highest loadings No 1083 NA 16 8 

9. Vanderlinde & Braak NA  Not mentioned
b
 No 471 471

c
 35 18 

10. Stankov, Higgins, Saucier, & 

Knežević 
Based on low communalities 

No 452 NA 132 24 

11. Livanis & Tryon NA  NA No 307 / 277 NA 34 31 

12. Storch, Rasmussen, Price, 

Larson, Murphy, & 

Goodman
e
 .40 

 

NA No 130 130
c
 10 10 

13. Ku & Minas Not mentioned
b
  Not mentioned

b
 No 208 NA 34 26 

14. Abramowitz et al. NA  NA No 478 477 / 423 20 20 

15. Waters & Cross Not mentioned
b
  NA No 2809 2809 14 13 

16. Labbe & Maisto .40  NA Yes 91 294 26 16 

17. Davis et al.  .50  NA No 300 150 6 4 

18. Neilands, Chakravarty, NA  NA No 380 1001 13 13 
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Darbes, Beougher, & Hoff 

19. Timothy et al.  .50  NA Yes 558 545 7 6 

20. Yost .30  Not mentioned
b
 No 213 258 37 23 

21. Vissers, Keijsers, van der 

Veld, de Jong, & 

Hutschemaekers 

Based on highest loadings 

No 750 199 69 12 

22. Cua, Junttila, & Schroeder NA  NA No NA 435 / 164 5 5 

23. Noone, Stephens, & Alpass Reliability No 1532 1532
c
 52/ 52 / 52 / 52 50/ 49 / 49 / 50 

Note. EFA = Exploratory factor analysis; CFA = Confirmatory factor analysis. All studies are published in 2010, and found using the 

keywords “scale” and “develop*”. Cells with NA denoted a lack of information in the original articles.   

a
The cutoff set so that items with the second largest regression weight on the factors larger than this value was discarded.  

b
The article stated  that a cutoff was used as a criterion for determining deletion of items, but the value was not mentioned.  

c
Confirmatory factor analysis shared the sample with exploratory factor analysis. 

d
CFA was done before EFA. 
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Appendix C 

Besides sensitivity and specificity for different ratios, non-computable sensitivity was 

calculated to shown the association between CFA non-computability and each selection error. 

This ratio corresponded to the number of replications in which the EFA selection contained that 

error and the CFA solution was not computable with the EFA implied model divided by the total 

number of replications in which the EFA selection contained that error. Results were reported in 

Table C1. Small sample size, more factors to be extracted, fewer strong indicators, more weak 

indicators, and lower magnitude of weak loadings associate with increased non-computable 

sensitivity, but the effects may be due to the increase in number of non-computable cases. 

Generally, misspecification leads to more occurrences of non-computable CFA.  
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Table C1 

Group means of non-computable sensitivity  

 

Mean number of non-

computable cases 
False alarm Miss Misspecification 

NE-NC     

100-100 64.6 .15 .14 .22 

200-200 1.4 .02 .02 .10 

400-400 7.2 .00 .01 .00 

800-800 0.1 .00 .00 --- 

100-800 26.4 .06 .06 .10 

800-100 0.0 .01 .32 --- 

f     

3 3.5 .01 .08 .09 

5 14.4 .04 .05 .14 

7 30.8 .08 .09 .18 

pS/f     

3 28.7 .07 .12 .17 

6 2.4 .01 .02 .09 

pW/pS     

0 1.8 --- .02 .03 

1 12.7 .03 .07 .13 

2 24.3 .01 .09 .19 

λW     

0.1 31.1 .10 .13 .20 

0.2 17.6 .04 .08 .17 

0.3 6.2 .01 .04 .08 

     

Overall 15.9 .04 .07 .14 

Note. Non-computable sensitivity=
N(CFA solution was not computable  | EFA selection contained that error) 

N(EFA selection contained that error)
.   

Conditions in which no selection errors were found in EFA were excluded.  

 

 


